1,259
Views
14
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Tensorial elastic properties and stability of interface states associated with Σ5(210) grain boundaries in Ni3(Al,Si)

, , , &
Pages 273-282 | Received 11 Nov 2016, Accepted 24 Mar 2017, Published online: 02 May 2017

References

  • Duscher G, Chisholm MF, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries. Nat Mater. 2004 Sep;3(9):621–626.
  • Lu GH, Deng SH, Wang TM, et al. Theoretical tensile strength of an Al grain boundary. Phys Rev B. 2004 Apr;69(13).
  • Pokluda J, Čern\’{y} M, Šandera P, et al. Calculations of theoretical strength: state of the art and history. J Comp-Aided Mat Design. 2004 Jan;11(1):1–28.
  • Kohyama M. Ab initio study of the tensile strength and fracture of coincidence tilt boundaries in cubic SiC: polar interfaces of the 122 Σ9 boundary. Phys Rev B. 2002 May 1;65(18).
  • Ogata S, Umeno Y, Kohyama M. First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces. Model Sim Mat Sci Eng. 2009 Jan;17(1).
  • Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B. 2001 Jun 1;63(22).
  • Yazyev OV, Louie SG. Topological defects in graphene: dislocations and grain boundaries. Phys Rev B. 2010 May 15;81(19).
  • Muller DA, Singh DJ, Silcox J. Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys Rev B. 1998 Apr 1;57(14):8181–8202.
  • Wang Y, Li J. Phase field modeling of defects and deformation. Acta Mater. 2010 Feb;58(4):1212–1235.
  • Mrovec M, Gr\"{o}ger R, Bailey AG, et al. Bond-order potential for simulations of extended defects in tungsten. Phys Rev B. 2007 Mar;75(10).
  • Yan YF, Noufi R, Al-Jassim MM. Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. Phys Rev Lett. 2006 May 26;96(20).
  • Lojkowski W, Fecht HJ. The structure of intercrystalline interfaces. Prog Mat Sci. 2000;45(5–6):339–568.
  • Dawson I, Bristowe PD, Lee MH, et al. First-principles study of a tilt grain boundary in rutile. Phys Rev B. 1996 Nov 15;54(19):13727–13733.
  • Imaeda M, Mizoguchi T, Sato Y, et al. Atomic structure, electronic structure, and defect energetics in [001](310) Σ5 grain boundaries of SrTiO3 and BaTiO3. Phys Rev B. 2008 Dec;78(24).
  • Tanaka S, Kohyama M. Ab initio calculations of the 3C-SiC(111)/Ti polar interfaces. Phys Rev B. 2001 Dec 15;64(23).
  • McKenna KP, Shluger AL. First-principles calculations of defects near a grain boundary in MgO. Phys Rev B. 2009 Jun;79(22).
  • Kohyama M. Computational studies of grain boundaries in covalent materials. Model Sim Mater Sci Eng. 2002 May;10(3):R31–R59.
  • Oba F, Nishitani SR, Adachi H, et al. Ab initio study of symmetric tilt boundaries in ZnO. Phys Rev B. 2001 Jan 15;63(4).
  • Ochs T, Beck O, Elsässer C, et al. Symmetrical tilt grain boundaries in body-centred cubic transition metals: an ab initio local-density-functional study. Phil Mag A. 2000 Feb;80(2):351–372.
  • Lejček P, Šob M, Paidar V. Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results. Progr Mat Sci. 2017 Jun;87:83–139.
  • Ackland GJ, Mendelev MI, Srolovitz DJ, et al. Development of an interatomic potential for phosphorus impurities in α-iron. J Phys Cond Mat. 2004 Jul 14;16(27):S2629–S2642.
  • Scheiber D, Pippan R, Puschnig P, Ruban A, Romaner L. Ab-initio search for cohesion-enhancing solute elements at grain boundaries in molybdenum and tungsten. Int J Refract. Met Hard Mater 2016;60:75-81.
  • Yan M, \v{S}ob M, Luzzi DE, et al. Interatomic forces and atomic-structure of grain-boundaries in copper-bismuth alloys. Phys Rev B. 1993 Mar 1;47(10):5571–5582.
  • Zhang L, Da Silva JLF, Li J, et al. Effect of copassivation of Cl and Cu on CdTe grain boundaries. Phys Rev Lett. 2008 Oct 10;101(15).
  • Braithwaite JS, Rez P. Grain boundary impurities in iron. Acta Mater. 2005 May;53(9):2715–2726.
  • Christensen M, Wahnstrom G. Co-phase penetration of WC(1010)/WC(110) grain boundaries from first principles. Phys Rev B. 2003 Mar 15;67(11).
  • Domain C, Becquart CS. Diffusion of phosphorus in α-Fe: An ab initio study. Phys Rev B. 2005 Jun;71(21).
  • Du YA, Ismer L, Rogal J, et al. First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe. Phys Rev B. 2011 Oct 31;84(14).
  • Zhang L, Shu X, Jin S, et al. First-principles study of He effects in a bcc Fe grain boundary: site preference, segregation and theoretical tensile strength. J Phys Cond Mater. 2010 Sep 22;22(37).
  • Asta M, Hoyt JJ. Thermodynamic properties of coherent interfaces in f.c.c.-based Ag-Al alloys: A first-principles study. Acta Mater. 2000 Mar 14;48(5):1089–1096.
  • Thomson DI, Heine V, Payne MC, et al. Insight into gallium behavior in aluminum grain boundaries from calculation on Σ11 (113) boundary. Acta Mater. 2000 Sep 4;48(14):3623–3632.
  • Wachowicz E, Ossowski T, Kiejna A. Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys Rev B. 2010 Mar 1;81(9).
  • Wachowicz E, Kiejna A. Effect of impurities on grain boundary cohesion in bcc iron. Comp Mater Sci. 2008 Oct;43(4):736–743.
  • Sutton AP, Balluffi RW. Interfaces in crystalline materials. Oxford: Oxford University Press; 1995.
  • Lejček P. Grain boundary segregation in metals. Heidelberg: Springer; 2010.
  • Všianská M, Šob M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog Mat Sci. 2011;56:817.
  • Všianská M, Šob M. Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel. Phys Rev B. 2011;84:014418.
  • Froseth A, Van Swygenhoven H, Derlet PM. The influence of twins on the mechanical properties of nc-Al. Acta Mater. 2004 May 3;52(8):2259–2268.
  • Lu GH, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys Rev B. 2006;73:224115.
  • Ogata S, Umeno Y, Kohyama M. Model Sim Mater Sci Eng. 2009;17:013001.
  • Pang XY, Janisch R, Hartmaier A. Interplanar potential for tension-shear coupling at grain boundaries derived from ab initio calculations. Model Sim Mater Sci Eng. 2016 Jan;24(1).
  • Razumovskiy VI, Ruban AV, Razumovskii IM, et al. The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: an ab initio study. Scr Mater. 2011 Nov;65(10):926–929.
  • Tahir AM, Janisch R, Hartmaier A. Hydrogen embrittlement of a carbon segregated Σ 5(310)[001] symmetrical tilt grain boundary in α-Fe. Mater Sci Eng A. 2014 Aug;26(612):462–467.
  • Tahir AM, Janisch R, Hartmaier A. Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurites. Model Sim Mater Sci Eng. 2013 Oct;21(7).
  • Razumovskiy VI, Vekilov YK, Razumovskii IM, et al. Effect of alloying elements and impurities on interface properties in aluminum alloys. Phys Sol State. 2011 Nov;53(11):2189–2193.
  • Hristova E, Janisch R, Drautz R, et al. Solubility of carbon in α-iron under volumetric strain and close to the Σ5(310)[001] grain boundary: Comparison of DFT and empirical potential methods. Comp Mat Sci. 2011 Jan;50(3):1088–1096.
  • Janisch R, Ahmed N, Hartmaier A. Ab initio tensile tests of al bulk crystals and grain boundaries: universality of mechanical behavior. Phys Rev B. 2010 May 1;81(18).
  • Razumovskiy VI, Lozovoi AY, Razumovskii IM. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Materialia. 2015 Jan;1(82):369–377.
  • Scheiber D, Razumovskiy VI, Puschnig P, et al. Ab initio description of segregation and cohesion of grain boundaries in W-25 at.% Re alloys. Acta Mater. 2015;88:180–189.
  • Janisch R, Elsässer C. Interstitial impurities at grain boundaries in metals: insight from atomistic calculations. Int J Mater Res. 2009 Nov;100(11):1488–1493.
  • Janisch R, Elsässer C. Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: An ab initio density functional theory study. Phys Rev B. 2008 Mar;77(9).
  • Gemming S, Janisch R, Schreiber M, et al. Density-functional investigation of the (113)[-110] twin grain boundary in Co-doped anatase TiO2 and its influence on magnetism in dilute magnetic semiconductors. Phys Rev B. 2007 Jul;76(4).
  • Janisch R, Els\"{a}sser C. Segregated light elements at grain boundaries in niobium and molybdenum. Phys Rev B. 2003 Jun 11;67(22).
  • Razumovskiy VI, Lozovoi AY, Razumovskii IM. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2016 Mar;106:401–402.
  • van de Walle A. A complete representation of structure-property relationships in crystals. Nat Mater. 2008;7:455.
  • Mouhat F, Coudert FX. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90:224104.
  • Jung SB, Minamino Y, Araki H, et al., Diffusion of Copper, Iron and Silicon in Ni3Al, Defect and diffusion forum. 1993;95–98:859.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864.
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993 Jan;47(1):558–561.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996 Oct;54(16):11169–11186.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994 Dec;50(24):17953–17979.
  • Dronskowski R, Blöchl PE. Crystal orbital hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97:8617.
  • Deringer VL, Tchougreeff AL, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A. 2011;115:5461.
  • Maintz S, Deringer VL, Tchougreeff AL, et al. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J Comput Chem. 2013;34:2557.
  • Maintz S, Deringer VL, Tchougreeff AL, et al. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J Comput Chem. 2016;37:1030.
  • Yu R, Zhu J, Ye HQ. Calculations of single-crystal elastic constants made simple. Comp Phys Commun. 2010;181:671.
  • Zhou L, Holec D, Mayrhofer PH. Ab initio study of the alloying effect of transition metals on structure, stability and ductility of CrN. J Appl Phys. 2013;113:043511.
  • Smithells metals reference book. 6th ed. London: Butterworths; 1983.
  • Lu G, Kioussis N, Wu R, et al. First-principles studies of the Σ5 tilt grain boundary in Ni3Al. Phys Rev B. 1999;59:891.
  • Kumar A, Wang J, Tomé C. First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 2015;85:144–154.
  • Frankel J, Vassiliou J, Jamieson JC, et al. The elastic-constants of Ni3Al to 1.4 GPa. Physica B+C. 1986;139–140:198.
  • Grimsditch M, Nizzoli F. Effective elastic-constants of superlattices of any symmetry. Phys Rev B. 1986;33:5891.
  • Titrian H, Aydin U, Friák M, et al. Self-consistent scale-bridging approach to compute the elasticity of multi-phase polycrystalline materials. Vol. 1524, MRS Proceedings; 2013.
  • Friák M, Counts WA, Ma D, et al. Theory-guided materials design of multi-phase Ti-Nb alloys with bone-matching elastic properties. Materials. 2012;5:1853.
  • Zhu LF, Friák M, Lymperakis L, et al. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. J Mech Behav Biomed Mat. 2013;20:296.
  • Maisel SB, Hoefler M, Müller S. A canonical stability-elasticity relationship verified for one million face-centred-cubic structures. Nature. 2012 Nov 29;491(7426):740+.
  • Zhu LF, Friák M, Dick A, et al. First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys. Acta Mater. 2012 Feb;60(4):1594–1602.
  • Wolf D, Lutsko J. Structurally induced supermodulus effect in superlattices. Phys Rev Lett. 1988;60:1170–1173.
  • Kluge MD, Wolf D, Lutsko JF, et al. Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation. J Appl Phys. 1990;67:2370–2379.
  • Aoki K, Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition. J Jpn Inst Met. 1979;43:1190–1196.
  • Jiao Z, Luan J, Liun C. Strategies for improving ductility of ordered intermetallics. Prog Nat Sci: Mater Int; 2016.
  • Ting TCT. Anisotropic elasticity. New York (NY): Oxford University Press; 1996.
  • Dingreville R, Qu J. A semi-analytical method to compute surface elastic properties. Acta Materialia. 2007 Jan;55(1):141–147.
  • Salehinia I, Shao S, Wang J, et al. Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater. 2015;86:331–340.
  • Friák M, Šob M, Vitek V. Ab initio calculation of phase boundaries in iron along the bcc-fcc transformation path and magnetism of iron overlayers. Phys Rev B. 2001;63:052405.
  • Legut D, Friák M, Šob M. Phase stability, elasticity, and theoretical strength of polonium from first principles. Phys Rev B. 2010;81:214118.
  • Černý M, Pokluda J, Šob M, et al. Ab initio calculations of elastic and magnetic properties of Fe Co, Ni, and Cr crystals under isotropic deformation. Phys Rev B. 2003;67:035116.
  • Šesták P, Černý M, Pokluda J. Influence of normal stress on shear strength along (110) and (112) deformation paths in B2 NiTi alloy from first principles. Mat Sci Eng A. 2008;481–482:247.
  • Šesták P, Černý M, Pokluda J. Elastic properties of B19‘ structure of NiTi alloy under uniaxial and hydrostatic loading from first principles. Strength Mater. 2008;70:12.
  • Černý M, Šesták P, Řehák P, et al. Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mat Sci Eng A. 2016;669:218.