2,664
Views
5
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Carrier properties of B atomic-layer-doped Si films grown by ECR Ar plasma-enhanced CVD without substrate heating

ORCID Icon, , , &
Pages 294-306 | Received 12 Jan 2017, Accepted 26 Mar 2017, Published online: 27 Apr 2017

References

  • Esaki L. New phenomenon in narrow Germanium p−n junctions. Phys Rev. 1957;109:603–604.
  • Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011;479:329–337.10.1038/nature10679
  • Morita Y, Mori T, Migita S, et al. Performance enhancement of tunnel field-effect transistors by synthetic electric field effect. IEEE Electron Dev Lett. 2014;35:792–794.
  • Morita Y, Fukuda K, Mori T, et al. Introduction of SiGe/Si Heterojunction into novel multilayer tunnel FinFETs. Jpn J Appl Phys. 2016;55: 04EB06.10.7567/JJAP.55.04EB06
  • Ito R, Sakuraba M, Murota J. Hole tunnelling properties in resonant tunnelling diodes with Si/strained Si0.8Ge0.2 heterostructures grown on Si(100) by low-temperature ultraclean LPCVD. Semicond Sci Technol. 2007;22:S38–41.
  • Seo T, Takahashi K, Sakuraba M, et al. Improvement in negative differential conductance characteristics of hole resonant-tunneling diodes with high Ge fraction Si/strained Si1−xGex/Si(100) heterostructure. Solid-State Electron. 2009;53:912–915.10.1016/j.sse.2009.04.016
  • Takahashi K, Sakuraba M, Murota J. Fabrication of high-Ge-fraction strained Si1−xGex/Si hole resonant tunneling diode using low-temperature Si2H6 reaction for nanometer-order ultrathin Si barriers. Solid-State Electron. 2011;60:112–115.10.1016/j.sse.2011.01.040
  • People R. Physics and applications of GexSi1−x/Si strained-layer heterostructures. IEEE J Quantum Electron. 1986;QE-22:1696–1710.10.1109/JQE.1986.1073152
  • Meyerson BS. Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Appl Phys Lett. 1986;48:797–799.
  • Murota J, Nakamura N, Kato M, et al. Low-temperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment. Appl Phys Lett. 1989;54:1007–1009.10.1063/1.100781
  • Sedgwick TO, Berkenblit M, Kuan TS. Low-temperature selective epitaxial growth of silicon at atmospheric pressure. Appl Phys Lett. 1989;54:2689–2691.10.1063/1.101036
  • Murota J, Ono S. Low-temperature epitaxial growth of Si/Si1−xGex/Si heterostructure by chemical vapor deposition. Jpn J Appl Phys. 1994;33:2290–2299.
  • Murota J, Sakuraba M, Tillack B. Atomically controlled processing for group IV semiconductors by chemical vapor deposition. Jpn J Appl Phys. 2006;45:6767–6785.10.1143/JJAP.45.6767
  • Tillack B, Heinemann B, Knoll D, et al. Base doping and dopant profile control of SiGe npn and pnp HBTs. Appl Surf Sci. 2008;254:6013–6016.10.1016/j.apsusc.2008.02.124
  • Takehiro S, Sakuraba M, Tsuchiya T, et al. High Ge fraction intrinsic SiGe-heterochannel MOSFETs with embedded SiGe source/drain electrode formed by in-situ doped selective CVD epitaxial growth. Thin Solid Films. 2008;517:346–349.10.1016/j.tsf.2008.08.040
  • Baert K, Deschepper P, Poortmans J, et al. Selective Si epitaxial growth by plasma-enhanced chemical vapor deposition at very low temperature. Appl Phys Lett. 1992;60:442–444.10.1063/1.106628
  • Rosenblad C, Deller HR, Graf T, et al. Low temperature epitaxial growth by LEPECVD. J Crystal Growth. 1998;188:125–130.10.1016/S0022-0248(98)00061-X
  • Damon-Lacoste J, Roca i Cabarrocas P. Toward a better physical understanding of a-Si:H/c-Si heterojunction solar cells. J Appl Phys. 2009;105:063712.10.1063/1.3091283
  • Labrune M, Moreno M, Roca i Cabarrocas P. Ultra-shallow junctions formed by quasi-epitaxial growth of boron and phosphorous-doped silicon films at 175 °C by rf-PECVD. Thin Solid Films. 2010;518:2528–2530.10.1016/j.tsf.2009.09.143
  • Shahrjerdi D, Hekmatshoar B, Bedell SW, et al. Low-temperature epitaxy of compressively strained Silicon directly on Silicon substrates. J Electron Mat. 2012;41:494–497.10.1007/s11664-011-1807-6
  • Sakuraba M, Muto D, Mori M, et al. Very low-temperature epitaxial growth of silicon and germanium using plasma-assisted CVD. Thin Solid Films. 2008;517:10–13.10.1016/j.tsf.2008.08.028
  • Sakuraba M, Sugawara K, Murota J. Atomically controlled plasma processing for group IV Quantum heterostructure formation. Key Eng Mat. 2011;470:98–103.10.4028/www.scientific.net/KEM.470
  • Ueno N, Sakuraba M, Murota J, et al. Epitaxial growth of Si1−xGex alloys and Ge on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition without substrate heating. Thin Solid Films. 2014;557:31–35.10.1016/j.tsf.2013.11.023
  • Ueno N, Sakuraba M, Sato S. Surface reaction in thin film formation of Si1-xGex Alloys on Si(100) by Electron-Cyclotron-Resonance Ar Plasma chemical vapor deposition without substrate heating. ECS Trans. 2014;64(6):99–105.10.1149/06406.0099ecst
  • Ueno N, Sakuraba M, Osakabe Y, et al. Electronic properties of Si/Si-Ge Alloy/Si(100) heterostructures formed by ECR Ar plasma CVD without substrate heating. Mat Sci Semicond Process. Forthcoming 2017.
  • Sasaki S, Sakuraba M, Akima H, et al. Silicon-Carbon Alloy Film formation on Si(100) using SiH4 and CH4 reaction under low-energy ECR Ar plasma irradiation. Mat Sci Semicond Process. Forthcoming 2017.
  • Abe Y, Sakuraba M, Murota J. Epitaxial growth of B-doped Si on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition in a SiH4–B2H6–H2 gas mixture without substrate heating. Thin Solid Films. 2014;557:10–13.10.1016/j.tsf.2013.08.118
  • Abe Y, Kubota S, Sakuraba M, et al. Epitaxial growth of heavily B-Doped Si and Ge Films on Si(100) by low-energy ECR Ar Plasma CVD without substrate heating. ECS Trans. 2013;58(9):223–228.10.1149/05809.0223ecst
  • Motegi K, Ueno N, Sakuraba M, et al. Electrical properties and B depth profiles of In-Situ B Doped Si films grown by ECR Ar plasma CVD without substrate heating. Mat Sci Semicond Process. Forthcoming 2017.
  • Sakuraba M. Research and development of group IV Quantum heterointegration processing. (June 18, 2016). DOI: 10.13140/RG.2.1.1667.0322
  • Schubert EF, Cunningham JE, Tsang WT. Electron-mobility enhancement and electron-concentration enhancement in δ-doped n-GaAs at T=300 K. Solid State Comm. 1987;63:591–594.10.1016/0038-1098(87)90859-3
  • Zrenner A, Koch F, Ploog K. Subband Physics for a “Realistic” δ-Doping layer. Surf Sci. 1988;196:671–676.10.1016/0039-6028(88)90760-1
  • Jorke H, Kibbel H. Boron delta doping in Si and Si0.8Ge0.2 layers. Appl Phys Lett. 1990;57:1763–1765.10.1063/1.104060
  • Headrick RL, Weir BE, Levi AFJ, et al. Si(100)-(2×1)boron reconstruction: self-limiting monolayer doping. Appl Phys Lett. 1990;57:2779–2781.10.1063/1.103785
  • Scappucci G, Klesse WM, Yeoh LA, et al. Bottom-up assembly of metallic germanium. Sci Rep. 2015;5:12948.10.1038/srep12948
  • Shamim S, Mahapatra S, Scappucci G, et al. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in Silicon and Germanium. Phys Rev Lett. 2014;112:236602.10.1103/PhysRevLett.112.236602
  • Scappucci G, Klesse WM, Hamilton AR, et al. Stacking of 2D electron gases in Ge probed at the atomic level and its correlation to low-temperature magnetotransport. Nano Lett. 2012;12:4953–4959.10.1021/nl302558b
  • Scappucci G, Capellini G, Klesse WM, et al. Phosphorus atomic layer doping of germanium by the stacking of multiple delta layers. Nanotechnol. 2011;22:375203.10.1088/0957-4484/22/37/375203
  • Grützmacher DA, Eberl K, Powell AR, et al. Atomic layer doping for Si. Thin Solid Films. 1993;225:163–167.10.1016/0040-6090(93)90148-I
  • Kiyota Y, Nakamura T, Inada T. Boron δ-doping in Si using atmospheric pressure CVD. Appl Surf Sci. 1994;82(83):400–404.10.1016/0169-4332(94)90248-8
  • Kujirai H, Murakami E, Kimura S. Ultra-shallow and Abrupt boron profiles in Si by δ-Doping technique. Jpn J Appl Phys. 1995;34:782–786.10.1143/JJAP.34.782
  • Tillack B, Krüger D, Gaworzewski P, et al. Atomic layer doping of SiGe by low pressure (rapid thermal) chemical vapor deposition. Thin Solid Films. 1997;294:15–17.10.1016/S0040-6090(96)09461-8
  • Tillack B, Heinemann B, Knoll D. Atomic layer doping of SiGe – fundamentals and device applications. Thin Solid Films. 2000;369:189–194.10.1016/S0040-6090(00)00804-X
  • Tanno H, Sakuraba M, Tillack B, et al. Heavy atomic-layer doping of B in low-temperature Si epitaxial growth on Si(100) by ultraclean low-pressure chemical vapor deposition. Appl Surf Sci. 2008;254:6086–6089.10.1016/j.apsusc.2008.02.132
  • Tanno H, Sakuraba M, Tillack B, et al. Heavy B atomic-layer doping characteristics in Si epitaxial growth on B adsorbed Si(100) by ultraclean low-pressure CVD system. Solid-State Electron. 2009;53:877–879.10.1016/j.sse.2009.04.015
  • The effective Bohr radius is typically about 1.3 nm for a ground state of a heavy hole in the shape of a sphere, which can be calculated by using Bohr’s hydrogen atom model with relative permittivity of Si (11.9) and effective mass of heavy hole (0.49) listed in Sze SM and Ng KK. Physics of Semiconductor Devices. 3rd ed. Hoboken, New Jersey: John Wiley & Sons; 2007; p. 790.
  • Takagi S, Toriumi A, Iwase M, et al. On the universality of inversion layer mobility in Si MOSFET’s: part I-effects of substrate impurity concentration. IEEE Trans Electron Dev. 1994;41:2357–2362.10.1109/16.337449
  • Nosaka T, Sakuraba M, Tillack B, et al. Heavy B atomic-layer doping in Si epitaxial growth on Si(100) using electron-cyclotron-resonance plasma CVD. Thin Solid Films. 2010;518:S140–2.10.1016/j.tsf.2009.10.073
  • Sakuraba M, Murota J, Ono S. Stability of the dimer structure formed on Si(100) by ultraclean low-pressure chemical-vapor deposition. J Appl Phys. 1994;75:3701–3703.10.1063/1.356041
  • Juhel M, Laugier F, Delille D, et al. SIMS depth profiling of boron ultra shallow junctions using oblique O2+ beams down to 150 eV. Appl Surf Sci. 2006;252:7211–7213.10.1016/j.apsusc.2006.02.242
  • Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2:287–292.10.2307/2369245
  • van der Pauw LJ. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep. 1958;13:1–9.
  • van der Pauw LJ. A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev. 1958;20:220–224.
  • Sze SM, Ng KK. Physics of semiconductor devices 3rd ed. Hoboken, New Jersey: John Wiley & Sons; 2007; p. 33–35.
  • Murota J, Yamamoto Y, Costina I, et al. Atomically controlled processing for Si and Ge CVD epitaxial growth. ECS Trans. 2016;72(2):71–82.10.1149/07202.0071ecst
  • Masetti G, Severi M, Solmi S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans Electron Dev. 1983;ED-30: 764–76910.1109/T-ED.1983.21207
  • Altermatt PP, Schenk A, Geelhaar F, et al. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. J Appl Phys. 2003;93:1598–1604.10.1063/1.1529297
  • Fischetti MV, Laux SE. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J Appl Phys. 1996;80:2234–2252.10.1063/1.363052
  • Ramesh A, Berger PR, Loo R. High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition. Appl Phys Lett. 2012;100:092104.10.1063/1.3684834
  • Ramesh A, Growden TA, Berger PR, et al. Boron delta-doping dependence on Si/SiGe resonant interband tunneling diodes grown by chemical vapor deposition. IEEE Trans Electron Dev. 2012;59:602–609.10.1109/TED.2011.2180532
  • Armigliato A, Nobili A, Ostoja P, et al. Impurity solubility in silicon. In: Semiconductor Silicon. Huff HR, Sirtl E, editors. Princeton: Electrochemical Society; 1977; pp. 638–647.
  • Nobili D. Properties of Silicon. EMIS Datareviews Series No. 4. New York (NY): INSPEC; 1988; p. 384–385.
  • Aselage TL. The coexistence of silicon borides with boron-saturated silicon: metastability of SiB3. J Mater Res. 1998;13:1786–1794.10.1557/JMR.1998.0252
  • Zaima S, Yasuda Y. Study of reaction and electrical properties at Ti/SiGe/Si(100) contacts for ultralarge scale integrated applications. J Vac Sci Technol B. 1998;16:2623–2628.10.1116/1.590245
  • Noh J, Sakuraba M, Murota J, et al. Contact resistivity between tungsten and impurity (P and B)-doped Si1-x-yGexCy epitaxial layer. Appl Surf Sci. 2003;212–213:679–683.10.1016/S0169-4332(03)00067-9
  • Cacciato A, Klappe JGE, Cowern NEB, et al. Dislocation formation and B transient diffusion in C coimplanted Si. J Appl Phys. 1996;79:2314–2325.10.1063/1.361157
  • De Salvador D, Napolitani E, Bisognin G, et al. Boron diffusion in extrinsically doped crystalline silicon. Phys Rev B. 2010;81:045209.10.1103/PhysRevB.81.045209