2,335
Views
25
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Novel magnetic properties of CoTe nanorods and diversified CoTe2 nanostructures obtained at different NaOH concentrations

, , , &
Pages 325-333 | Received 22 Dec 2016, Accepted 06 Mar 2017, Published online: 15 May 2017

References

  • Ruppert C, Aslan OB, Heinz TF. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014;14:6231–6236. 10.1021/nl502557g
  • Wang F, Yin L, Wang Z, et al. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Appl Phys Lett. 2016;109:193111. 10.1063/1.4967232
  • Wang K, Ye Z, Liu C, et al. Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl Mater Interfaces. 2016;8:2910–2916. 10.1021/acsami.5b10835
  • Liu X, Li D, Yang W, et al. Controlled calcination of ZnSe and ZnTe nanospheres to prepare visible-light catalysts with enhanced photostability and photoactivity. J Mater Sci. 2016;51:11021–11037. 10.1007/s10853-016-0406-6
  • Zhou P, Fan L, Wu J, et al. Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. J Alloys Compd. 2016;685:384–390. 10.1016/j.jallcom.2016.05.287
  • Jia J, Wu J, Dong J, et al. Cobalt telluride/reduced graphene oxide using as high performance counter electrode for dye-sensitized solar cells. Electrochim Acta. 2015;185:184–189. 10.1016/j.electacta.2015.10.150
  • Hirayama M, Misawa T, Miyake T, et al. Ab initio studies of magnetism in the iron chalcogenides FeTe and FeSe. J Phys Soc Jpn. 2015;84:093703. 10.7566/JPSJ.84.093703
  • Kunchur MN, Dean CL, Moghadam NS, et al. Current-induced depairing in the Bi2Te3/FeTe interfacial superconductor. Phys Rev B. 2015;92:094502. 10.1103/PhysRevB.92.094502
  • Hicks LD, Dresselhaus MS. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B. 1993;47:16631–16634. 10.1103/PhysRevB.47.16631
  • Zhu H-T, Luo J, Liang J-K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties. J Mater Chem A. 2014;2:12821–12826. 10.1039/C4TA02532F
  • Tengner S. Über Diselenide und Ditelluride von Eisen, Kobalt und Nickel [Diselenides and ditellurides of iron, cobalt and nickel]. Zeitschrift für anorganische und allgemeine Chemie. 1938;239:126–132. 10.1002/zaac.v239:2
  • Haraldsen H, Grønvold F, Hurlen T. Eine röntgenographische und magnetische Untersuchung des Systems Kobalt/Tellur [X-ray and magnetic investigation of the cobalt-tellurium system]. Zeitschrift für anorganische und allgemeine Chemie. 1956;283:143–164. 10.1002/(ISSN)1521-3749
  • Muhler M, Bensch W, Schur M. Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range CoTe1.3-CoTe2. J Phys Condens Matter. 1998;10:2947–2962.
  • Uchida E. Magnetic properties of cobalt telluride. J Phys Soc Jpn. 1955;10:517–522. 10.1143/JPSJ.10.517
  • Bither TA, Bouchard RJ, Cloud WH, et al. Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties. Inorg Chem. 1968;7:2208–2220. 10.1021/ic50069a008
  • Peng Q, Dong Y, Li Y. Synthesis of uniform CoTe and NiTe semiconductor nanocluster wires through a novel coreduction method. Inorg Chem. 2003;42:2174–2175. 10.1021/ic0262031
  • Xie Y, Li B, Su H, et al. Solvothermal route to CoTe2 nanorods. Nanostructured Mater. 1999;11:539–544. 10.1016/S0965-9773(99)00340-2
  • Li J, Tang X, Song L, et al. From Te nanotubes to CoTe2 nanotubes: a general strategy for the formation of 1D metal telluride nanostructures. J Cryst Growth. 2009;311:4467–4472. 10.1016/j.jcrysgro.2009.08.007
  • Fan H, Zhang Y, Zhang M, et al. Glucose-assisted synthesis of CoTe nanotubes in situ templated by Te nanorods. Cryst Growth Des. 2008;8:2838–2841. 10.1021/cg7011364
  • Jiang L, Zhu YJ, Cui JB. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: a general solvothermal synthesis and optical properties. Eur J Inorg Chem. 2010;2010:3005–3011. 10.1002/ejic.v2010:19
  • Lei Y-X, Zhou J-P, Wang J-Z, et al. Novel magnetic properties of uniform NiTex nanorods selectively synthesized by hydrothermal method. Mater Des. 2017;117:390–395. 10.1016/j.matdes.2017.01.007
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. 10.1103/PhysRevB.54.11169
  • MedeA®. Santa Fe, New Mexico, USA: Materials Design, Inc.; 2013.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. 10.1103/PhysRevLett.77.3865
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192. 10.1103/PhysRevB.13.5188
  • Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13:1389–1393. 10.1002/(ISSN)1521-4095
  • Xi G, Liu Y, Wang X, et al. Large-scale synthesis, growth mechanism, and photoluminescence of ultrathin Te nanowires. Cryst Growth Des. 2006;6:2567–2570. 10.1021/cg0603218
  • Song J-M, Lin Y-Z, Zhan Y-J, et al. Superlong high-quality tellurium nanotubes: synthesis, characterization, and optical property. Cryst Growth Des. 2008;8:1902–1908. 10.1021/cg701125k
  • Shi R, Liu X, Shi Y, et al. Selective synthesis and magnetic properties of uniform CoTe and CoTe2 nanotubes. J Mater Chem. 2010;20:7634–7636. 10.1039/c0jm01777a
  • Vonsovskii CB. The modern theory of magnetism. Moscow: Gostekhteorizdat; 1953.
  • Zhang BB, Wang PF, Xu JC, et al. Synthesis and magnetic properties of bundled and dispersed Co3O4 nanowires. Mater Res Bull. 2016;75:230–232. 10.1016/j.materresbull.2015.11.048
  • Afshar M, Sargolzaei M, Kordbacheh AA. Relativistic first-principles study on spin and orbital magnetism of mattagamite (CoTe2). Phys Metals Metallogr. 2015;116:341–345. 10.1134/S0031918X15040110
  • Xing GZ, Lu YH, Tian YF, et al. Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example. AIP Adv. 2011;1:022152. 10.1063/1.3609964
  • Cui XY, Soon A, Phillips AE, et al. First principles study of 3d transition metal doped. J Magn Magn Mater. 2012;324:3138–3143. 10.1016/j.jmmm.2012.05.021
  • Guo M, Gao G, Hu Y. Magnetism and electronic structure of Mn- and V-doped zinc blende ZnTe from first-principles calculations. J Magn Magn Mater. 2011;323:122–126. 10.1016/j.jmmm.2010.08.044