3,488
Views
30
CrossRef citations to date
0
Altmetric
New topics/Others

Understanding chemically processed solar cells based on quantum dots

, , , &
Pages 334-350 | Received 10 Jan 2017, Accepted 05 Apr 2017, Published online: 15 May 2017

References

  • Becquerel AE. Mémoire sur les effets électrique produits sous l’influence des rayons solaires. [Essay on electric effects occuring under the influence of solar radiation] C R Hebd Seances Acad Sci. 1839;9:561–567.
  • Green MA, Emery K, Hishikawa Y, et al. Solar cell efficiency table (version 49). Prog Photovolt: Res Appl. 2017;25(1):3–13.10.1002/pip.v25.1
  • Transparent Cost Database - OpenEI [Internet]. Golden (CO): National Renewable Energy Laboratory. 2009-2015 [ cited 2017 Jan 6]. Available from: http://en.openei.org/apps/TCDB.
  • Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32(3):510–519.10.1063/1.1736034
  • Becker C, Ruske F, Sontheimer T, et al. Microstructure and photovoltaic performance of polycrystalline silicon thin films on temperature-stable ZnO: Al layers. J Appl Phys. 2009;106(8):084506.10.1063/1.3240343
  • NREL Photovoltaic Research [Internet]. Golden (CO):NREL; 2016 [ cited 2017 Jan 5]. Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  • Jackson P, Hariskos D, Wuerz R, et al. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys Status Solidi RRL. 2015;9(1):28-31.10.1002/pssr.201409520
  • Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998;395(6702):583–585.
  • Kuang D, Comte P, Zakeeruddin SM, et al. Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Solar Energy. 2011;85(6):1189–1194.10.1016/j.solener.2011.02.025
  • Chung I, Lee B, He J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature. 2012;485(7399):486–489.10.1038/nature11067
  • Nozik AJ. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu Rev Phys Chem. 2001;52(1):193–231.10.1146/annurev.physchem.52.1.193
  • Nozik AJ. Quantum dot solar cells. Phys E. 2002;14(1):115–120.10.1016/S1386-9477(02)00374-0
  • Kim GH, García de Arquer FP, Yoon YJ, et al. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers. Nano Lett. 2015;15(11):7691–7696.10.1021/acs.nanolett.5b03677
  • Griffiths DJ. Introduction to quantum mechanics. Upper Saddle River (NJ): Pearson Education; 2005.
  • Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984;80(9):4403–4409.10.1063/1.447218
  • Wang Y, Suna A, Mahler W, et al. PbS in polymers - from molecules to bulk solids. J Chem Phys. 1987;87(12):7315–7322.10.1063/1.453325
  • Kang I, Wise FW. Electronic structure and optical properties of PbS and PbSe quantum dots. J Opt Soc Am B. 1997;14(7):1632–1646.10.1364/JOSAB.14.001632
  • Hyun BR, Zhong YW, Bartnik AC, et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano. 2008;2(11):2206–2212.10.1021/nn800336b
  • Yang Y, Rodriguez-Cordoba W, Xiang X, et al. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 2012;12(1):303–309.10.1021/nl2035783
  • Gao J, Johnson JC. Charge trapping in bright and dark states of coupled PbS quantum dot films. ACS Nano. 2012;6(4):3292–3303.10.1021/nn300707d
  • Fernée MJ, Thomsen E, Jensen P, et al. Highly efficient luminescence from a hybrid state found in strongly quantum confined PbS nanocrystals. Nanotechnology. 2006;17(4):956.10.1088/0957-4484/17/4/020
  • Lewis J, Wu S, Jiang X. Unconventional gap state of trapped exciton in lead sulfide quantum dots. Nanotechnology. 2010;21(45):455402.10.1088/0957-4484/21/45/455402
  • Wanger DD, Correa RE, Dauler EA, et al. The dominant role of exciton quenching in PbS quantum-dot-based photovoltaic devices. Nano Lett. 2013;13(12):5907–5912.10.1021/nl402886j
  • Bockelmann U, Bastard G. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys Rev B. 1990;42(14):8947.10.1103/PhysRevB.42.8947
  • Benisty H, Sotomayor-Torres C, Weisbuch C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys Rev B. 1991;44(19):10945.10.1103/PhysRevB.44.10945
  • Pelouch WS, Ellingson RJ, Powers PE, et al. Investigation of hot-carrier relaxation in quantum-well and bulk GaAs at high carrier densities. Semicond Sci Technol. 1992;7(3B):B337–B339.10.1088/0268-1242/7/3B/086
  • Rosenwaks Y, Hanna MC, Levi DH, et al. Hot-carrier cooling in GaAs quantum-wells vs bulk. Phys Rev B. 1993;48(19):14675–14678.10.1103/PhysRevB.48.14675
  • Pelouch WS, Ellingson RJ, Powers PE, et al. Comparison of hot-carrier relaxation in quantum-wells and bulk GaAs at high carrier densities. Phys Rev B. 1992;45(3):1450–1453.10.1103/PhysRevB.45.1450
  • Beard MC, Luther JM, Semonin OE, et al. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc Chem Res. 2012;46(6):1252–1260.
  • Semonin OE, Luther JM, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science. 2011;334(6062):1530–1533.10.1126/science.1209845
  • Böhm ML, Jellicoe TC, Tabachnyk M, et al. Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 2015;15(12):7987–7993.10.1021/acs.nanolett.5b03161
  • Davis NJ, Böhm ML, Tabachnyk M, et al. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat Comm. 2015;6:8259.
  • Ellingson RJ, Beard MC, Johnson JC, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005;5(5):865–871.10.1021/nl0502672
  • Schaller RD, Sykora M, Jeong S, et al. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J Phys Chem B. 2006;110(50):25332–25338.10.1021/jp065282p
  • Schaller RD, Klimov VI. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett. 2004;92(18):186601.10.1103/PhysRevLett.92.186601
  • Hanna M, Nozik AJ. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys. 2006;100(7):074510.10.1063/1.2356795
  • König D, Casalenuovo K, Takeda Y, et al. Hot carrier solar cells: principles, materials and design. Phys E. 2010;42(10):2862–2866.10.1016/j.physe.2009.12.032
  • Semonin OE, Luther JM, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science. 2011;334(6062):1530–1533.10.1126/science.1209845
  • Beard MC, Midgett AG, Law M, et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 2009;9(2):836–845.10.1021/nl803600v
  • Luther JM, Beard MC, Song Q, et al. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007;7(6):1779–1784.10.1021/nl0708617
  • Lee JS, Kovalenko MV, Huang J, et al. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotechnol. 2011;6(6):348–352.10.1038/nnano.2011.46
  • Takeda Y, Motohiro T, König D, et al. Practical factors lowering conversion efficiency of hot carrier solar cells. Appl Phys Express. 2010;3(10):104301.10.1143/APEX.3.104301
  • Nozik AJ, Beard MC, Luther JM, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev. 2010;110(11):6873–6890.10.1021/cr900289f
  • Okada Y, Morioka T, Yoshida K, et al. Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell. J Appl Phys. 2011;109(2):024301.10.1063/1.3533423
  • Robinson RD, Sadtler B, Demchenko DO, et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science. 2007;317(5836):355–358.10.1126/science.1142593
  • Yu P, Cardona M. Fundamentals of semiconductors: physics and materials properties. New York (NY): Springer Science & Business Media; 2010.10.1007/978-3-642-00710-1
  • Matthews D, Summers H, Smowton P, et al. Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers. Appl Phys Lett. 2002;81(26):4904–4906.10.1063/1.1532549
  • Bailey CG, Forbes DV, Polly SJ, et al. Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE J Photovolt. 2012;2(3):269–275.10.1109/JPHOTOV.2012.2189047
  • Raviswaran A, Liu CP, Kim J, et al. Evolution of coherent islands during strained-layer Volmer-Weber growth of Si on Ge (111). Phys Rev B. 2001;63(12):125314.10.1103/PhysRevB.63.125314
  • Benyoucef M, Reithmaier J. Direct growth of III–V quantum dots on silicon substrates: structural and optical properties. Semicond Sci Technol. 2013;28(9):094004.10.1088/0268-1242/28/9/094004
  • Schmidt V, Witteman JV, Gösele U. Growth, Thermodynamics, and electrical properties of silicon nanowires. Chem Rev. 2010;110(1):361–388.10.1021/cr900141g
  • Schmidt V, Senz S, Gösele U. UHV chemical vapour deposition of silicon nanowires. Zeitschrift für Metallkunde. 2005;96(5):427–428.10.3139/146.018129
  • Trentler TJ, Hickman KM, Goel SC, et al. Solution-liquid-solid growth of crystalline Ill-V semiconductors: an analogy to vapor-liquid-solid growth. Science. 1995;270(5243):1791–1794.10.1126/science.270.5243.1791
  • Westwater J, Gosain D, Tomiya S, et al. Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B Nanotechnol Microelectron Mater, Process, Meas, Phenom. 1997;15(3):554–557.10.1116/1.589291
  • Wu Y, Yang P. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc. 2001;123(13):3165–3166.10.1021/ja0059084
  • Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem. 1994;98(12):3183–3188.10.1021/j100063a022
  • Kamat PV. Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C. 2008;112(48):18737–18753.10.1021/jp806791s
  • Faraday M. The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London. 1857;147:145–181.10.1098/rstl.1857.0011
  • Peng XG, Wickham J, Alivisatos AP. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc. 1998:120(21):LBNL-41792.
  • Qu LH, Yu WW, Peng XP. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 2004;4(3):465–469.10.1021/nl035211r
  • Xie R, Li Z, Peng X. Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals. J Am Chem Soc. 2009;131(42):15457–15466.10.1021/ja9063102
  • Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc. 1993;115(19):8706–8715.10.1021/ja00072a025
  • Murray CB, Kagan C, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci. 2000;30(1):545–610.10.1146/annurev.matsci.30.1.545
  • Murray CB, Sun SH, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev. 2001;45(1):47–56.10.1147/rd.451.0047
  • Jin T, Fujii F, Sakata H, et al. Amphiphilic p-sulfonatocalix[4]arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine. Chem Comm. 2005;74:4300–4302.10.1039/b506608e
  • Hines MA, Scholes GD. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater. 2003;15(21):1844–1849.10.1002/(ISSN)1521-4095
  • Lim X. The nanolight revolution is coming. Nature. 2016;531(7592):26-1844.
  • Emin S, Singh SP, Han L, et al. Colloidal quantum dot solar cells. Sol Energy. 2011;85(6):1264–1282.10.1016/j.solener.2011.02.005
  • Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano. 2010;4(6):3374–3380.10.1021/nn100335g
  • Huynh WU, Dittmer JJ, Alivisatos AP. Hybrid nanorod-polymer solar cells. Science. 2002;295(5564):2425–2427.10.1126/science.1069156
  • Ren S, Chang LY, Lim SK, et al. Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011;11(9):3998–4002.10.1021/nl202435t
  • Liu J, Tanaka T, Sivula K, et al. Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc. 2004;126(21):6550–6551.10.1021/ja0489184
  • McDonald SA, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater. 2005;4(2):138–142.10.1038/nmat1299
  • Ryan JW, Marin-Beloqui JM, Albero J, et al. Nongeminate recombination dynamics-device voltage relationship in hybrid PbS quantum dot/C60 solar cells. J Phys Chem C. 2013;117(34):17470–17476.10.1021/jp4059824
  • Zhou Y, Eck M, Veit C, et al. Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol Energy Mater Sol Cells. 2011;95(4):1232–1237.10.1016/j.solmat.2010.12.041
  • Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics. Adv. Mater. 2011;23(6):776–780.10.1002/adma.201003819
  • Guo CX, Yang HB, Sheng ZM, et al. Layered graphene/quantum dots for photovoltaic devices. Angew Chem, Int Ed. 2010;49(17):3014–3017.10.1002/anie.200906291
  • Landi B, Castro S, Ruf H, et al. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells. 2005;87(1):733–746.10.1016/j.solmat.2004.07.047
  • Lee YL, Chang CH. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. J Power Sources. 2008;185(1):584–588.10.1016/j.jpowsour.2008.07.014
  • Lee HJ, Chen P, Moon SJ, et al. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir. 2009;25(13):7602–7608.10.1021/la900247r
  • Lee H, Leventis HC, Moon SJ, et al. PbS and CdS quantum dot‐sensitized solid‐state solar cells: “Old concepts, new results”. Adv Funct Mater. 200;19(17):2735-2742.
  • Mora-Seró I, Gimenez S, Fabregat-Santiago F, et al. Recombination in quantum dot sensitized solar cells. Acc Chem Res. 2009;42(11):1848–1857.10.1021/ar900134d
  • Tenne R, Hodes G. Improved efficiency of CdSe photoanodes by photoelectrochemical etching. Appl Phys Lett. 2008;37(4):428–430.
  • Shen Q, Kobayashi J, Diguna LJ, et al. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys. 2008;103(8):084304.10.1063/1.2903059
  • Radich JG, Dwyer R, Kamat PV. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2–/Sn2– at the counter electrode. J Phys Chem Lett. 2011;2(19):2453–2460.
  • Lee YL, Huang BM, Chien HT. Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem Mater. 2008;20(22):6903–6905.10.1021/cm802254u
  • González-Pedro V, Xu X, Mora-Sero I, et al. Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano. 2010;4(10):5783–5790.10.1021/nn101534y
  • Diguna LJ, Shen Q, Kobayashi J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett. 2007;91(2):023116–023113.10.1063/1.2757130
  • Rühle S, Shalom M, Zaban A. Quantum‐dot‐sensitized solar cells. ChemPhysChem. 2010;11(11):2290–2304.10.1002/cphc.v11:11
  • Zhao K, Pan Z, Mora-Seró I, et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J Am Chem Soc. 2015;137(16):5602–5609.10.1021/jacs.5b01946
  • Luther JM, Law M, Beard MC, et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008;8(10):3488–3492.10.1021/nl802476m
  • Strasfeld DB, Dorn A, Wanger DD, et al. Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices. Nano Lett. 2012;12(2):569–575.10.1021/nl204116b
  • Piliego C, Protesescu L, Bisri SZ, et al. 5.2% efficient PbS nanocrystal Schottky solar cells. Energy. Environ Sci. 2013;6(10):3054–3059.
  • Liu H, Zhitomirsky D, Hoogland S, et al. Systematic optimization of quantum junction colloidal quantum dot solar cells. Appl Phys Lett. 2012;101(15):151112.10.1063/1.4757866
  • Liu H, Tang J, Kramer IJ, et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv Mater. 2011;23(33):3832–3837.
  • Tang J, Kemp KW, Hoogland S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater. 2011;10(10):765–771.10.1038/nmat3118
  • Ip AH, Thon SM, Hoogland S, et al. Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol. 2012;7(9):577–582.10.1038/nnano.2012.127
  • Ning Z, Zhitomirsky D, Adinolfi V, et al. Graded doping for enhanced colloidal quantum dot photovoltaics. Adv Mater. 2013;25(12):1719–1723.10.1002/adma.v25.12
  • Tang J, Liu H, Zhitomirsky D, et al. Quantum junction solar cells. Nano Lett. 2012;12(9):4889–4894.10.1021/nl302436r
  • Kramer IJ, Levina L, Debnath R, et al. Solar cells using quantum funnels. Nano Lett. 2011;11(9):3701–3706.10.1021/nl201682h
  • Wang X, Koleilat GI, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat Photonics. 2011;5(8):480–484.10.1038/nphoton.2011.123
  • Cotton FA, Wilkinson G, Murillo CA, et al. Advanced Inorganic Chemistry, 6th edition. New Delhi (India): Wiley India Pvt Limited; 2007.
  • Mazumder S, Dey R, Mitra M, et al. Review: biofunctionalized quantum dots in biology and medicine. J Nanomater. 2009;2009:38.
  • Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673(1):1–25.10.1016/j.aca.2010.05.026
  • Konstantatos G, Sargent EH. Colloidal quantum dot optoelectronics and photovoltaics. Cambridge (United Kingdom): Cambridge University Press; 2013.10.1017/CBO9781139022750
  • Moody IS, Stonas AR, Lonergan MC. PbS nanocrystals functionalized with a short-chain, ionic, dithiol ligand. J Phys Chem C. 2008;112(49):19383–19389.10.1021/jp807360q
  • Luther JM, Law M, Song Q, et al. Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano. 2008;2(2):271–280.10.1021/nn7003348
  • Barkhouse DAR, Pattantyus-Abraham AG, Levina L., et al. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. ACS Nano. 2008;2(11):2356-2362.
  • Szendrei K, Gomulya W, Yarema M, et al. PbS nanocrystal solar cells with high efficiency and fill factor. Appl Phys Lett. 2010;97(20):203501.10.1063/1.3518067
  • Xu F, Benavides J, Ma X, et al. Interconnected TiO2 nanowire networks for PbS quantum dot solar cell applications. J Nanotechnol. 2012;2012:709031.
  • Padilla D, Zhai G, Breeze AJ, et al. Thermal properties of TiO2/PbS nanoparticle solar cells. Nanomater Nanotechnol. 2012;2:18.10.5772/55901
  • Klem EJ, Shukla H, Hinds S, et al. Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids. Appl Phys Lett. 2008;92(21):212105.10.1063/1.2917800
  • Inerbaev TM, Masunov AE, Khondaker SI, et al. Quantum chemistry of quantum dots: effects of ligands and oxidation. J Chem Phys. 2009;131(4):044106.10.1063/1.3135193
  • Voznyy O, Zhitomirsky D, Stadler P, et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano. 2012;6(9):8448–8455.10.1021/nn303364d
  • Jeong KS, Tang J, Liu H, et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano. 2012;6(1):89–99.10.1021/nn2039164
  • Zherebetskyy D, Scheele M, Zhang Y, et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science. 2014;344(6190):1380–1384.10.1126/science.1252727
  • Malgras V, Nattestad A, Yamauchi Y, et al. The effect of surface passivation on the structure of sulphur-rich PbS colloidal quantum dots for photovoltaic application. Nanoscale. 2015;7(13):5706–5711.10.1039/C4NR07006B
  • Tang J, Brzozowski L, Barkhouse DAR, et al. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano. 2010;4(2):869–878.10.1021/nn901564q
  • Koleilat GI, Levina L, Shukla H, et al. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano. 2008;2(5):833–840.10.1021/nn800093v
  • Giansante C, Infante I, Fabiano E, et al. “Darker-than-Black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J Am Chem Soc. 2015;137(5):1875–1886.10.1021/ja510739q
  • Kovalenko MV, Bodnarchuk MI, Zaumseil J, et al. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J Am Chem Soc. 2010;132(29):10085–10092.10.1021/ja1024832
  • Kovalenko MV, Scheele M, Talapin DV. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science. 2009;324(5933):1417–1420.10.1126/science.1170524
  • Nag A, Kovalenko MV, Lee JS, et al. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as surface ligands. J Am Chem Soc. 2011;133(27):10612–10620.10.1021/ja2029415
  • Yang Y, Zheng Y, Cao W, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat Photonics. 2015. Available from: http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2015.36.html
  • Supran GJ, Song KW, Hwang GW, et al. High‐performance shortwave‐infrared light‐emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv Mater. 2015;27(8):1437–1442.10.1002/adma.201404636
  • Bae WK, Joo J, Padilha LA, et al. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J Am Chem Soc. 2012;134(49):20160–20168.10.1021/ja309783v
  • Zanella M, Maserati L, Pernia Leal M, et al. Atomic ligand passivation of colloidal nanocrystal films via their reaction with propyltrichlorosilane. Chem Mater. 2013;25(8):1423–1429.10.1021/cm303022w
  • Zhang H, Hu B, Sun L, et al. Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. Nano Lett. 2011;11(12):5356–5361.10.1021/nl202892p
  • St Cate, Liu Y, Schins JM, et al. Phonons do not assist carrier multiplication in PbSe quantum dot solids. J Phys Chem Lett. 2013;4(19):3257–3262.
  • Kinder E, Moroz P, Diederich G, et al. Fabrication of all-inorganic nanocrystals solids through matrix encapsulation of nanocrystal arrays. J Am Chem Soc. 2011;133(50):20488–20499.10.1021/ja208670r
  • Ning Z, Ren Y, Hoogland S, et al. All‐inorganic colloidal quantum dot photovoltaics employing solution‐phase halide passivation. Adv Mater. 2012;24(47):6295–6299.10.1002/adma.201202942
  • Zhitomirsky D, Furukawa M, Tang J, et al. N‐type colloidal‐quantum‐dot solids for photovoltaics. Adv Mater. 2012;24(46):6181–6185.10.1002/adma.v24.46
  • Thon SM, Ip AH, Voznyy O, et al. Role of bond adaptability in the passivation of colloidal quantum dot solids. ACS Nano. 2013;7(9):7680–7688.10.1021/nn4021983
  • Mora-Sero I, Bertoluzzi L, Gonzalez-Pedro V, et al. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nat Commun. 2013;4:2272.
  • Malgras V, Zhang G, Nattestad A, et al. Trap-assisted transport and non-uniform charge distribution in sulfur-rich PbS colloidal quantum dot-based solar cells with selective contacts. ACS Appl Mater Interfaces. 2015;7(48):26455–26460.10.1021/acsami.5b07121
  • Yuan M, Voznyy O, Zhitomirsky D, et al. Synergistic doping of fullerene electron transport layer and colloidal quantum dot solids enhances solar cell performance. Adv. Mater. 2015;27(5):917–921.10.1002/adma.v27.5
  • Maraghechi P, Labelle AJ, Kirmani AR, et al. The donor–supply electrode enhances performance in colloidal quantum dot solar cells. ACS Nano. 2013;7(7):6111–6116.10.1021/nn401918d
  • Ehrler B, Musselman KP, Böhm ML, et al. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. ACS Nano. 2013;7(5):4210–4220.10.1021/nn400656n
  • Willis SM, Cheng C, Assender HE, et al. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 2012;12(3):1522–1526.10.1021/nl204323j
  • Wang X, Koleilat GI, Fischer A, et al. Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. ACS Appl Mater Interfaces. 2011;3(10):3792–3795.10.1021/am201097p
  • Jean J, Chang S, Brown PR, et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater. 2013;25(20):2790–2796.10.1002/adma.201204192
  • Debnath R, Tang J, Barkhouse DA, et al. Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. J Am Chem Soc. 2010;132(17):5952–5953.10.1021/ja1013695
  • Tang J, Wang X, Brzozowski L, et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv Mater. 2010;22(12):1398–1402.10.1002/adma.200903240
  • Johnston KW, Pattantyus-Abraham AG, Clifford JP, et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl Phys Lett. 2008;92(15):151115.10.1063/1.2912340
  • Etgar L, Moehl T, Gabriel S, et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano. 2012;6(4):3092–3099.10.1021/nn2048153
  • Brown PR, Lunt RR, Zhao N, et al. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 2011;11(7):2955–2961.10.1021/nl201472u
  • Gao J, Perkins CL, Luther JM, et al. n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011;11(8):3263–3266.10.1021/nl2015729
  • Gao JB, Luther JM, Semonin OE, et al. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 2011;11(3):1002–1008.10.1021/nl103814g
  • Bakulin AA, Neutzner S, Bakker HJ, et al. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices. ACS Nano. 2013;7(10):8771–8779.10.1021/nn403190s
  • Zhitomirsky D, Voznyy O, Hoogland S, et al. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano. 2013;7(6):5282–5290.10.1021/nn402197a
  • Whitham K, Yang J, Savitzky BH, et al. Charge transport and localization in atomically coherent quantum dot solids. Nat Mater. 2016;15(5):557–563.10.1038/nmat4576
  • Guyot-Sionnest P, Wehrenberg B, Yu D. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J Chem Phys. 2005;123(7):074709.10.1063/1.2004818
  • Nagpal P, Klimov VI. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nat Comm. 2011;2:486.10.1038/ncomms1492
  • Stadler P, Sutherland BR, Ren Y, et al. Joint mapping mobility and trap density in colloidal quantum dots solids. ACS Nano. 2013;7(7):5757–5762.10.1021/nn401396y
  • Lan X, Voznyy O, Kiani A, et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv Mater. 2016;28(2):299–304.10.1002/adma.201503657
  • Yang Z, Janmohamed A, Lan X, et al. Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 2015;15(11):7539–7543.10.1021/acs.nanolett.5b03271
  • Lan X, Voznyy O, García del Arquer FP, et al. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett. 2016;16(7):4630–4634.10.1021/acs.nanolett.6b01957
  • Zhang X, Hägglund C, Johansson EM. Highly efficient, transparent and stable semitransparent colloidal quantum dot solar cells: a combined numerical modeling and experimental approach. Energy Environ Sci. 2017 [cited 2017 Jan 11]; p. 9. DOI:10.1039/C6EE02824A
  • Cappelluti F, Gioannini M, Khalili A. Impact of doping on InAs/GaAs quantum-dot solar cells: a numerical study on photovoltaic and photoluminescence behavior. Sol Energy Mater Sol Cells. 2016;157(157):209–220.10.1016/j.solmat.2016.05.049
  • So D, Pradhan S, Konstantatos G. Solid-state colloidal CuInS 2 quantum dot solar cells enabled by bulk heterojunctions. Nanoscale. 2016;8(37):16776–16785.10.1039/C6NR05563J
  • Gonzalez-Carrero S, Francés-Soriano L, González-Béjar M, et al. The luminescence of CH3NH3PbBr 3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small. 2016;12(38):5245–5250.10.1002/smll.v12.38
  • Swarnkar A, Marshall AR, Sanehira EM, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science. 2016;354(6308):92–95.10.1126/science.aag2700
  • Malgras V, Tominaka S, Ryan JW, et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J Am Chem Soc. 2016;138(42):13874–13881.10.1021/jacs.6b05608
  • Malgras V, Henzie J, Takei T, et al. Hybrid methylammonium lead halide perovskite nanocrystals confined in gyroidal silica templates. Chem Comm. 2017;53:2359–2362.10.1039/C6CC10245J