2,036
Views
13
CrossRef citations to date
0
Altmetric
Focus on Advanced nanoprocessing and applications in sensorics

Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers

, , , , , , & show all
Pages 374-380 | Received 15 Feb 2017, Accepted 13 Apr 2017, Published online: 31 May 2017

References

  • The International Technology Roadmap for Semiconductors [Internet]. Available from: http://www.itrs2.net/. (2017 January 15)
  • Likharev KK. Single-electron devices and their applications. Proc IEEE. 1999;87:606–632.
  • Durrani ZAK. Single-electron devices and circuits in silicon. London: Imperial College; 2009.
  • Rahman SFBA, Nakata D, Shiratori Y, et al. Boolean logic gates utilizing GaAs three-branch nanowire junctions controlled by Schottky wrap gates. Jpn J Appl Phys. 2009;48:06FD01--4.
  • Muller CR, Worschech L, Hopfner P, et al. Monolithically integrated logic nor gate based on GaAs/AlGaAs three-terminal junctions. IEEE Electron Device Lett. 2007;28:859–861.
  • Wu PC, Ye Y, Liu C, et al. Logic gates constructed on CdS nanobelt field-effect transistors with high-k HfO2 top-gate dielectrics. J Mater Chem. 2009;19:7296–7300.
  • Worschech L, Harmann F, Kim TY, et al. Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode. Appl Phys Lett. 2010;96:042112--3.
  • Venkataratnam AK, Goel AK. Design and simulation of logic circuits with hybrid architectures of single-electron transistors and conventional MOS devices at room temperature. Microelectron J. 2008;39:1461–1468.
  • Stone NJ, Ahmed H. Logic circuit elements using single-electron tunnelling transistors. Electron Lett. 1999;35:1883–1884.
  • Uchida K, Koga J, Ohba R, et al. Programmable single-electron transistor logic for future low-power intelligent LSI: proposal and room-temperature operation. IEEE Trans Electron Devices. 2003;50:1623–1630.
  • Ono Y, Fujiwara A, Nishiguchi K, et al. Manipulation and detection of single electrons for future information processing. Jpn J Appl Phys. 2005;97:031101--19.
  • Kim SJ, Lee CK, Chung RS, et al. Single-electron-based flexible multivalued exclusive-or logic gate. IEEE Trans Electron Devices. 2009;56:1048–1055.
  • Kim JB, Hong SJ, Kim J. New circuits for XOR and XNOR functions. Int J Electron. 1997;82:131–143.
  • He J, Durrani ZAK, Ahmed H. Two-way switch for binary decision diagram logic using silicon single-electron transistors. Microelectron Eng. 2004;73–74:712–718.
  • Iwamura H, Akazawa M, Amemiya Y. Single-electron majority logic circuits. IEICE Trans Electron. 1998;E81C:42–48.
  • Tsimperidis I, Karafyllidis I, Thanailakis A. A single-electron three-input AND gate. Microelectron J. 2002;33:191–195.
  • Heij CP, Hadley P, Mooij JE. Single-electron inverter. Appl Phys Lett. 2001;78:1140–1142.
  • Noguchi Y, Yamamoto M, Ishii H, et al. Photoresponses in gold nanoparticle single-electron transistors with molecular floating gates. Jpn J Appl Phys. 2013;52:110102--7.
  • Takahashi Y, Fujiwara A, Yamazaki K, et al. Multigate single-electron transistors and their application to an exclusive-OR gate. Appl Phys Lett. 2000;76:637–639.
  • Tsuya D, Suzuki M, Aoyagi Y, et al. Exclusive-OR gate using a two-input single-electron transistor in single-wall carbon nanotubes. Appl Phys Lett. 2005;87:153101–3.
  • Azuma Y, Yasutake Y, Kono K, et al. Single-electron transistor fabricated by two bottom-up processes of electroless Au plating and chemisorption of Au nanoparticle. Jpn J Appl Phys. 2010;49:090206–3.
  • Okabayashi N, Maeda K, Murak T, et al. Uniform charging energy of single-electron transistors by using size-controlled Au nanoparticles. Appl Phys Lett. 2012;100:033101--3.
  • Azuma Y, Suzuki S, Maeda K, et al. Nanoparticle single-electron transistor with metal-bridged top-gate and nanogap electrodes. Appl Phys Lett. 2011;99:073109--3.
  • Kano S, Azuma Y, Tanaka D, et al. Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors. J Appl Phys. 2013;114:223717--6.
  • Azuma Y, Sakamoto M, Teranishi T, et al. Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes. Appl Phys Lett. 2016;109:223106--5.
  • Yasutake Y, Kono K, Kanehara M, et al. Simultaneous fabrication of nanogap gold electrodes by electroless gold plating using a common medical liquid. Appl Phys Lett. 2007;91:203107-3.
  • Serdio VVM, Azuma Y, Takeshita S, et al. Robust nanogap electrodes by self-terminating electroless gold plating. Nanoscale. 2012;4:7161–7167.
  • Serdio VVM, Muraki T, Takeshita S, et al. Gap separation-controlled nanogap electrodes by molecular ruler electroless gold plating. RSC Adv. 2015;5:22160–22167.
  • Azuma Y, Onuma Y, Sakamoto M, et al. Rhombic Coulomb diamonds in a single-electron transistor based on an Au nanoparticle chemically anchored at both ends. Nanoscale. 2016;8:4720–4726.
  • Kano S, Azuma Y, Maeda K, et al. Ideal discrete energy levels in synthesized Au nanoparticles for chemically assembled single-electron transistors. ACS Nano. 2012;6:9972–9977.
  • Maeda K, Okabayashi N, Kano S, et al. Logic operations of chemically assembled single-electron transistor. ACS Nano. 2012;6:2798–2803.
  • Ponce Ortiz R, Facchetti A, Marks TJ. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev. 2010;110:205–239.
  • Klauk H, Zschieschang U, Pflaum J, et al. Ultralow-power organic complementary circuits. Nature. 2007;445:745–748.
  • Klauk H, Zschieschang U, Weitz RT, et al. Organic transistors based on di(phenylvinyl)anthracene: performance and stability. Adv Mater. 2007;19:3882–3887.
  • Wöbkenberg PH, Ball J, Kooistra FB, et al. Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics. Appl Phys Lett. 2008;93:013303--3.
  • Hackenberger G, Azuma Y, Kano S, et al. Silicon-nitride-passivated bottom-up single-electron transistors. Jpn J Appl Phys. 2013;52:110101--5.
  • Maehashi K, Ohno Y, Inoue K, et al. Electrical characterization of carbon nanotube field-effect transistors with SiNx passivation films deposited by catalytic chemical vapor deposition. Appl Phys Lett. 2008;92:183111--3.
  • Teranishi T, Hasegawa S, Shimizu T, et al. Heat-induced size evolution of gold nanoparticles in the solid state. Adv Mater. 2001;13:1699–1701.
  • Shimizu T, Teranishi T, Hasegawa S, et al. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B. 2003;107:2719–2724.
  • Kanehara M, Sakurai J, Sugmura H, et al. Room-temperature size evolution of thiol-protected gold nanoparticles assisted by proton acids and halogen anions. J Am Chem Soc. 2009;131:1630–1631.
  • Li X, Yasutake Y, Kono K, et al. Au nanoparticles chemisorbed by dithiol molecules inserted in alkanethiol self-assembled monolayers characterized by scanning tunneling microscopy. Jpn J Appl Phys. 2009;48:04C180-4.
  • Kano S, Azuma Y, Kanehara M, et al. Room-temperature Coulomb blockade from chemically synthesized Au nanoparticles stabilized by acid-base interaction. Appl Phys Express. 2010;3:105003--3.
  • Koo H, Kano S, Tanaka D, et al. Characterization of thiol-functionalized oligo(phenylene-ethynylene)-protected Au nanoparticles by scanning tunneling microscopy and spectroscopy. Appl Phys Lett. 2012;101:083115--5.
  • Matsuzaki K, Nomura K, Yanagi H, et al. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl Phys Lett. 2008;93:202107--3.
  • Choi DH, Wang Q, Azuma Y, et al. Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon. Sci Rep. 2013;3:1617--5.
  • Hanna AE, Tinkham M. Variation of the Coulomb staircase in a two-junction system by fractional electron charge. Phys Rev B. 1991;44:5919–5922.
  • Zhang H, Yasutake Y, Shichibu Y, et al. Tunneling resistance of double-barrier tunneling structures with an alkanethiol-protected Au nanoparticle. Phys Rev B. 2015;72:205441--7.
  • Kano S, Tanaka D, Sakamoto M, et al. Control of charging energy in chemically assembled nanoparticle single-electron transistors. Nanotechnology. 2015;26:045702--9.
  • Ion M, Berbecaru C, Iftimie S, et al. PLD deposited Al2O3 thin films for transparent electronics. Dig J Nanomater Bios. 2012;7:1609–1614.
  • Majima Y, Ogawa D, Iwamoto M, et al. Negative differential resistance by molecular resonant tunneling between neutral tribenzosubporphine anchored to a Au(111) surface and tribenzosubporphine cation adsorbed on to a tungsten tip. J Am Chem Soc. 2013;135:14159–14166.