6,681
Views
24
CrossRef citations to date
0
Altmetric
Energy materials

Solid state ionics: a Japan perspective

Pages 504-527 | Received 17 Mar 2016, Accepted 08 May 2017, Published online: 25 Jul 2017

References

  • Takahashi T, Yamamoto O. 固体電解質の導電率-6-AgS-HgI2系の導電率 [Conductivity of solid state electrolyte - 6-AgS-HgI2]. Denkikagaku (Electrochemistry, in Japanese). 1967;35:32. http://dl.ndl.go.jp/info:ndljp/pid/3381401
  • Takahashi T, Yamamoto O. The relevance of accelerated electrochemical pitting tests to the long-term pitting and crevice corrosion behavior of stainless steels in marine environments. J Electrochem Soc. 1971;118:1057. doi:10.1149/1.2408246.
  • Takahashi T. Opening remarks. Solid State Ionics. 1981;3-4:ix-x. doi:10.1016/0167-2738(81)90043-6
  • Miyake S, Hoshino S, Takenaka T. On the phase transition in cuprous iodide. J Phys Soc Japan. 1952;7(1):19–24. doi:10.1143/JPSJ.7.19.
  • Yokota I. On the deviation from the Einstein relation observed for diffusion of Ag+ Ions in α-Ag2S and others. J Phys Soc, Japan. 1966;21(3):420–423. doi:10.1143/JPSJ.21.420
  • Takahashi T, Yamamoto O, Yamada S, Hayashi S. Solid-state ionics: high copper ion conductivity of the system CuCl - CuI - RbCl. J Electrochem Soc. 1979;126(10):1654. doi:10.1149/1.2128770.
  • Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981;3/4:359–363. doi:10.1016/0167-2738(81)90113-2.
  • Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 Perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc. 1994;116:3801. doi:10.1021/ja00088a016.
  • Kamaya N, Honma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Mat. 2011;10(9):682–686. doi:10.1038/nmat3066.
  • Jost W. Specific heats of -silver iodide. J Chem Phy. 1971;55:4680. doi:10.1063/1.1676826.
  • Tubandt C. Leitfähigkeit and Überführungszahlen in festen Elektrolyten. In: Handbuch der Experimentalphysik. Wien W, Harms F, editors. Leipzig: Akademische Verlagsgesellschaft, 12, pt. 1; 1932. p. 383–469.
  • Frenkel J, Physik Z. Über die Wärmebewegung in festen und flüssigen Körpern. Physik Z. 1926;35:652. doi:10.1007/BF01379812.
  • Takahashi T, Kuwabara K, Yamamoto O. The electrical conductivity and the crystal structure of silver iodide. J Electrochem Soc. 1969;116(3):357–360. doi:10.1149/1.2411846.
  • Strock LW. Z Phys Chem. 1934;B25:441–459; Strock LW. Z Phys Chem. 1936;B31:132–136.
  • Hoshino S. Crystal structure and phase transition of some metallic halides (IV) on the anomalous structure of α-AgI. J Phys Soc Japan. 1957;12(4):315–326. doi:10.1143/JPSJ.12.315.
  • Hoshino S, Sakuma T, Fujishima H, et al. Neutron scattering study on distribution of cations in α-AgI-type superionic conductors. J Phys Soc Japan. 1983;52(4):1261–1269. doi:10.1143/JPSJ.52.1261.
  • Hoshino S, Sakuma T, Fujii Y. Distribution and anharmonic thermal vibration of cations in α-AgI. Solid State Commun. 1977;22(12):763–765. doi:10.1016/0038-1098(77)90063-1.
  • Cava RJ, Reidinger F, Wuensh BJ. Single-crystal neutron-diffraction study of AgI between 23° and 300 °C. Solid State Commun. 1977;24(6):411–416. doi:10.1016/0038-1098(77)91306-0.
  • Okazaki H. Deviation from the Einstein relation in average crystals self diffusion of Ag+ ions in α-Ag2S and α-Ag2Se. J Phys Soc Japan. 1967;23(2):355–360. doi:10.1143/JPSJ.23.355.
  • Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J Phys Soc Japan. 1957;12(6):570–586. DOI:10.1143/JPSJ.12.570
  • Compaan K, Haven Y. Correlation factors for diffusion in solids. Trans Faraday Soc. 1956;52:786. DOI:10.1039/TF9565200786; Compaan K, Haven Y. Correlation factors for diffusion in solids. Part 2. —Indirect interstitial mechanism. Trans Faraday Soc. 1958;54:1498. doi:10.1039/TF9585401498.
  • Leclaire AD, Lidiard AB. LIII. Correlation effects in diffusion in crystals. Phil Mag. 1956;1(6):518. doi:10.1080/14786435608238133.
  • Manning JB. Correlation effects in impurity diffusion. Phys Rev. 1959;116(4):819–827. doi:10.1103/PhysRev.116.819; Manning JB. Correlation factors for impurity diffusion—fcc Lattice. Phys. Rev. 1962;128:2169. doi:10.1103/PhysRev.128.2169.
  • Hoshino S. Crystal structure and phase transition of some metallic halides (II) on the phase transition and the crystal structures of cuprous bromide. J Phys Soc Japan. 1952;7(6):560–564. doi:10.1143/JPSJ.7.560
  • Reuter B, Hardel K. Ueber die Hochtemperaturmodifikation von Silbersulfidjodid. Naturwissenschaften. 1961;48(6):161–161. doi:10.1007/BF00639542.
  • Takahashi T, Yamamoto O. The Ag/Ag3SI/I2 solid electrolyte cell. Electrochimica Acta. 1966;11(7):779–789. doi:10.1016/0013-4686(66)87055-X.
  • Bradley JN, Greene PD. Solids with high ionic conductivity in group 1 halide systems. Trans Faraday Soc. 1967;63:424. doi:10.1039/TF9676300424.
  • Owens BB, Argue GR. High-Conductivity solid electrolytes: MAg4I5. Science. 1967;157(3786):308–310. doi:10.1126/science.157.3786.308.
  • Argue GR, Owens BB. 133rd National Meeting of the Electrochemical Society. Boston, MA. MS Abstract #281; 1968.
  • Takahashi T, Ikeda S, Yamamoto O. Solid-state ionics: a new high ionic conductivity solid electrolyte Ag6I4WO4 and use of this compound in a solid-electrolyte cell. J Electrochem Soc. 1973;120(5):647. doi:10.1149/1.2403524.
  • Takahashi T, Ikeda S, Yamamoto O. Solid-state ionics—Solids with high ionic conductivity in the systems silver iodide-silver oxyacid salts. J Electrochem Soc. 1972;119(4):477–482. doi:10.1149/1.2404235.
  • Takahashi T, Yamamoto O, Ikeda S. Solid‐state ionics: high‐conductivity solid copper ion conductors: N‐Alkyl (or Hydro)‐hexa methyl enetetra mi ne Halide‐Copper(l) Halide double salts. J Electrochem Soc. 1973;120;1431. doi: 10.1149/1.2403276
  • Takahashi T, Kanno R, Takeda Y, et al. Solid-state ionics-the CuCl-CuI-RbCl system. Solid State Ionics. 1981;3/4:283–287. doi:10.1016/0167-2738(81)90099-0.
  • Takahashi T, Yamamoto O. 5th Symp. Solid State Ionics Japan, Nagoya, Japan. Abstract P199; 1977.
  • Matsui T, Wagner JB. Investigations on a high conductivity solid electrolyte system, RbCl + CuCl. J Electrochem Soc. 1977;124(6):941–944. doi:10.1149/1.2133458.
  • Phillips JC. Structural principles of α - AgI and related double salts. J Electrochem Soc. 1976;123(6):934–940. doi:10.1149/1.2132971.
  • Bonino F, Lazzari M. Electrical conductivity of KCu4I5. J Power Sources. 1976;1(1):103–106. doi:10.1016/0378-7753(76)80012-2.
  • Phillips JC. Ionicity of the chemical bond in crystals. Rev Modern Phys. 1970;42(3):317–356. doi:10.1103/RevModPhys.42.317.
  • Bradley JM, Green D. Potassium iodide + silver iodide phase diagram. High ionic conductivity of KAg4I5. Trans Faraday Soc. 1966;62:2069. doi:10.1039/TF9666202069.
  • Yamamoto O. Report of works supported by grant-in-aid for co-operation research; 1983. p. 42.
  • Kanno K, Takeda Y, Masuyama Y, et al. Phase diagram and high copper ion conductivity of the copper(I) chloride-rubidium chloride system. Solid State Ionics. 1983;11(3):221–226. doi:10.1016/0167-2738(83)90027-9.
  • Biefeld RM. The KBr-CuBr and NaBr-CuBr phase diagrams. Mat Res Bull. 1975;10(11):1151–1156. doi:10.1016/0025-5408(75)90019-7.
  • Atake T, Kawaji H, Kanno R, et al. Heat capacity anomaly in the high ionic conductor Rb4Cu16I7Cl13. Solid State Ionics. 1992;53-56:1260–1263. doi:10.1016/0167-2738(92)90322-G.
  • Kanno R, Ohno K, Kawamoto Y, et al. Neutron diffraction study of high ionic conductor Rb4Cu16I7+xCl13-x at 50-300 K: correlation with ionic conductivity. J Solid State Chem. 1993;102(1):79–92. doi:10.1006/jssc.1993.1009.
  • Geller S. Crystal structure of the solid electrolyte, RbAg4I5. Science. 1967;157(3786):310–312. doi:10.1126/science.157.3786.310.
  • Owens BB, Argue GR. High conductivity solid electrolyte system Rbl ‐ AgI. J Electrochem Soc. 1970;117(7): 898-900. doi:10.1149/1.2407666
  • Owens BB, Argue GR, Groce IJ. Power Sources. Collins DH, editor. Vol. 2. Oxford: Pergamon Press; 1970. p. 389. ISBN 0080134351
  • Rossi M, Pistoia G, Scrosati B. A reversible solid-state battery with RbAg4I5 as Electrolyte. J Electrochem Soc. 1969;116(12):1642–1646. doi:10.1149/1.2411648.
  • Miyatani S. Point contact of Pt and γ-Cu2S. J Phys Soc Japan. 1956;11(10):1059–1063. doi:10.1143/JPSJ.11.1059.
  • Miyatani S. α-Ag2S as a mixed conductor. J Phys Soc Japan. 1968;24(2):328–336. doi:10.1143/JPSJ.24.328.
  • Miyatani S, Yokota I. Galvano- and thermomagnetic effects in α-Ag2Te. J Phys Soc Japan. 1959;14(6):750–754. DOI:10.1143/JPSJ.14.750
  • Wagner JB, Wagner C. Investigations on cuprous sulfide. J Chem Phys. 1957;26(6):1602–1606. doi:10.1063/1.1743591.
  • Ishikawa T, Miyatani S. Electronic and ionic conduction in Cu2-δSe, Cu2-δS and Cu2-δ(Se, S). J Phys Soc Japan. 1977;42(1):159–167. doi:10.1143/JPSJ.42.159.
  • Wagner C. Z Physik Chem. 1933;B21:25.
  • Yokota I. On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J Phys Soc Japan. 1961;16(11):2213–2223. doi:10.1143/JPSJ.16.2213
  • Yokota I, Miyatani S. Conduction and diffusion in ionic-electronic conductors. Solid State Ionics. 1981;3/4:17–21. doi:10.1016/0167-2738(81)90047-3.
  • Miyatani S. An extension of Yokota’s diffusion theory on mixed conduction to larger applied voltages. J Phys Soc Japan. 1981;50(5):1595–1602. doi:10.1143/JPSJ.50.1595.
  • Wagner C. Equation for transport in solid oxide and sulfides of transition metals. Progs Solid State Chem. 1975;10:3–16. doi:10.1016/0079-6786(75)90002-3.
  • de Groot SR, Mazur P. Non-equilibrium thermodynamics. North-Holland, Amsterdam; 1969. OCLC No.:301696976
  • Takahashi T, Yamamoto O. Solid-state ionics-mixed ionic and electronic conduction in Ag2Se-Ag3PO4 solid solutions. J Electrochem Soc. 1972;119(12):1735. doi:10.1149/1.2404089.
  • Ikeda H, Tada K. Application of solid electrolyte. Takahashi T, Kozawa A, editors. Cleveland, USA: JES press Inc; 1980.
  • Taguchi H, Shimada M, Koizumi M. The effect of oxygen vacancy on the magnetic properties in the system SrCoO3-δ (0 < δ < 0 5). J Solid State Chem. 1979;29 (2):221–225.10.1016/0022-4596(79)90227-5
  • Ishigaki T, Yamauchi S, Mizusaki J, et al. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. J Solid State Chem. 1984;54(1):100–107. doi:10.1016/0022-4596(84)90136-1.
  • Mizusaki J, Yamauchi S, Fueki K, et al. Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ. Solid State Ioncis. 1984;12:119–124. doi:10.1016/0167-2738(84)90138-3.
  • Minh NQ, Takahashi T. Science and technology of ceramic fuel cell. Amsterdam: Elsevier; 1995. ISBN 9780080540764.
  • Zeng Y, Lin YS. A transient TGA study on oxygen permeation properties of perovskite-type ceramic membrane. Solid State Ionics. 1998;110(3-4):209–221. doi:10.1016/S0167-2738(98)00136-2.
  • Obayashi H, Kudo T. Application of solid electrolyte. T. Takahashi, A. Kozawa, editors. Clevland, OH: JEC press; 1980. P102.
  • Yasuda I, Hikita T. Electrical conductivity and defect structure of calcium-doped lanthanum chromites. J Electrochem Soc. 1993;140(6):1699–1704. doi:10.1149/1.2221626.
  • Boroomand F, Wessel E, Bausinger H, et al. Correlation between defect chemistry and expansion during reduction of doped LaCrO3 interconnects for SOFCs. Solid State Ionics. 2000;129(1-4):251–258. doi:10.1016/S0167-2738(99)00330-6.
  • Onuma S, Yashiro K, Miyoshi S, et al. Oxygen nonstoichiometry of the perovskite-type oxide La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3). Solid State Ionics. 2004;174(1-4):287–293. doi:10.1016/j.ssi.2004.07.037.
  • Mizusaki J, Yasuda I, Shimoyama J, et al. Electrical conductivity, defect equilibrium and oxygen vacancy diffusion coefficient of La1−x Cax AlO3−δ single crystals. J Electrochem Soc. 1993;140(2):467–471. doi:10.1149/1.2221070.
  • Takahashi T, Iwahara H. Denkikagaku (Electrochemistry, in Japanese). 1967;35(6):433-437.
  • Takahashi T, Iwahara H. Ionic conduction in perovskite type oxide solid solution its application to the solid electrolyte fuel cell. Energy Conv. 1971;11(3):105–111. doi:10.1016/0013-7480(71)90100-8.
  • Fueki K, Mizusaki J, Yamauchi S, et al. Reactivity of solids, Barret P, Dufour LC, editors. Elsevier, Amsterdam; 1986. p 339
  • Ishigaki T, Yamauchi J, Mizusaki J, et al. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. J Solid State Chem. 1984;54(1):100–107. doi:10.1016/0022-4596(84)90136-1.
  • Ishigaki T, Yamauchi S, Kishio K, et al. Diffusion of oxide ion vacancies in perovskite type oxides. J Solid State Chem. 1988;73(1):179–187. doi:10.1016/0022-4596(88)90067-9.
  • Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981;3/4:359–363. doi:10.1016/0167-2738(81)90113-2.
  • Iwahara H, Uchida H, Maeda N. High temperature fuel and steam electrolysis cells using proton conductive solid electrolytes. J Power Sources. 1982;7(3):293–301. doi:10.1016/0378-7753(82)80018-9.
  • Iwahara H, Uchida H, Yanaka S. High temperature type proton conductor based on SrCeO3and its application to solid electrolyte fuel cells. Solid State Ionics. 1983;9/10:1021–1025. doi:10.1016/0167-2738(83)90125-X.
  • Iwahara H, Uchida H, Ono K, et al. Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc. 1988;135(2):529. doi:10.1149/1.2095649.
  • Ma G, Shimura T, Iwahara H. Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics. 1998;110(1-2):103–110. doi:10.1016/S0167-2738(98)00130-1.
  • Yajima T, Kazeoka H, Yogo T, Iwahara H. Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics. 1991;47(3-4):271–275. doi:10.1016/0167-2738(91)90249-B.
  • Iwahara H, Yajima T, Hibino T, et al. Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics. 1993;61(1-3):65–69. doi:10.1016/0167-2738(93)90335-Z.
  • Iwahara H. Technological challenges in the application of proton conducting ceramics. Solid State Ionics. 1995;77:289–298. doi:10.1016/0167-2738(95)00051-7.
  • Iwahara H. Proton conducting ceramics and their applications. Solid State Ionics. 1996;86/88:9–15. doi:10.1016/0167-2738(96)00087-2.
  • Iwahara H. 1994. Solid State Ionic Materials. Chowdari BVR, Yahaya M, Talib IA, Salleh MM, editors. ( World Science, Singapore). Proceedings of the 4th Asian Conference on Solid State Ionics. Solid State Ionic Materials. Chemical Sensors using Proton Conducting Ceramics p 79. p. 1-472. doi:10.1142/9789814533942.
  • Yajima T, Koide K, Fukatsu N, et al. A new hydrogen sensor for molten aluminum. Sensor and Actuator. 1993;14(1-3):697–699. doi:10.1016/0925-4005(93)85149-5.
  • Etell TH, Flenas SN. Electrical properties of solid oxide electrolytes. Chem Rev. 1970;70(3):339–376. doi:10.1021/cr60265a003.
  • van de Graaf MACG, Burggraaf AJ. 1984. Science and Technology of Zirconia II, Claussen N, Ruhel M, Heuer AH, editors. Columbus, OH: American Ceramics Society. p. 744. ISBN 0916094642
  • Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2–Ln2O3 (Ln=lanthanides) system. Solid State Ionics. 1999;121(1-4):133–139. doi:10.1016/S0167-2738(98)00540-2.
  • Badwal SPS. Effect of dopant concentration on electrical conductivity in the Sc2O3-ZrO2 system. J Material Science. 1987;22(11):4125–4132. doi:10.1007/BF01133368.
  • Yamamoto O, Arachi Y, Takeda Y, et al. Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics. 1995;79:137–142. doi:10.1016/0167-2738(95)00044-7.
  • Mizutani Y, Kawai M, Nomura K, et al. Proceeding of 5th International Symposium on Solid Oxide Fuel Cells. Stimming U, Singhal SC, Tagawa H, et al. Pennington, NJ: The Electrochem. Soc; 1997. p. 196. ISBN 1566771455 OCLC 421665039
  • Kudo T, Obayashi H. Oxygen ion conduction of the fluorite-type Ce1−xLnxO2−x/2 (Ln = Lanthanoid Element). J Electrochem Soc. 1975;122(1):142–147. doi:10.1149/1.2134143.
  • Cook Rl, Osborne JJ, White JH, et al. Investigations on BaTh0.9Gd0.1 O 3 as an intermediate temperature fuel cell solid electrolyte. J Electrochem Soc. 1992;139(2):L19-L20. doi:10.1149/1.2069273
  • Feng M, Goodenough JB. A superior oxide-ion electrolyte. Eur J Inorg Chem. 1994;131:663-672. ISSN: 0992-4361
  • Ishihara T, Ando M, Enoki M, et al. Proceedings of rare earths’04 in Nara, Japan oxide ion conductivity in La(Sr)Ga(Fe, Mg)O3 and its application for solid oxide fuel cells. J Alloys Compounds. 2006;408-412:507–511. doi:10.1016/j.jallcom.2004.12.086.
  • Nakayama S, Aono H, Sadaoka Y. Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy). Chem Lett. 1995;24(6):431–432. doi:10.1246/cl.1995.431.
  • Yoshioka H, Tanase S. Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells. Solid Stat Ionics. 2005;176(31-34):2395–2398. doi:10.1016/j.ssi.2005.06.026.
  • Samson JEH, Richings D, Slater PR. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics. 2001;139:205. doi:10.1016/S0167-2738(00)00835-3.
  • Ali R, Yashima M, Matsushima Y, et al. Diffusion path of oxide ions in an apatite-type ionic conductor La9.69(Si5.70Mg0.30)O26.24. Chem Mater. 2008;20(16):5203–5208. doi:10.1021/cm7035234.
  • Kobayashi K, Sakka Y. Research progress in nondoped lanthanoid silicate oxyapatites as new oxygen-ion conductors. J Ceram Soc Japan. 2014;122(1431):921–939. doi:10.2109/jcersj2.122.921.
  • Verbraeken MC, Cheung C, Sauard E, et al. High H− ionic conductivity in barium hydride. Nat Mater. 2015;14:95. doi:10.1038/nmat4136.
  • Kobayashi G, Hinuma Y, Matsuoka S, et al. Pure H– conduction in oxyhydrides. Science. 2016;351(6279):1314–1317. DOI:10.1126/science.aac9185
  • Wagner J, Wagner C. Electrical conductivity measurements on cuprous halides. J Chem Phys. 1957;26(6):1597–1601. doi:10.1063/1.1743590.
  • Yamaguchi S. Large, soft, and polarizable hydride ions sneak around in an oxyhydride. Science. 2016;351(6279):1262–1263. DOI:10.1126/science.aaf3361
  • Aono H, Sugimoto E, Sadaoka Y, et al. Ionic conductivity of the Lithium Titanium Phosphate (Li1+xMxTi2-x(PO4)3, M = Al, Sc, Y, and La) Systems. J Electrochem Soc. 1989;136(2):590–591. doi:10.1149/1.2096693.
  • Bruce PG, West AR. Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4. J Solid State Chem. 1982;44(3):354–365. doi:10.1016/0022-4596(82)90383-8.
  • von Alpen U, Rabenau A, Talat GH. Ionic conductivity in Li3N single crystals. Appl Phys Lett. 1977;30:621. doi:https://doi.org/10.1063/1.89283
  • Shimonishi Y, Zhang T, Imanishi N, et al. A study on lithium/air secondary batteries—Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources. 2011;196:5128. doi:https://doi.org/10.1016/j.jpowsour.2011.02.023
  • Visco SJ, Nimon N, Katz B, et al. 210th Electrochemical Society Meeting, Cancun, Mexico; 2006. Abstract # 388.
  • Zhang T, Imanishi N, Shimonishi Y, et al. Stability of a water-stable lithium metal anode for a Lithium-Air Battery with acetic acid-water solutions. J Electrochem Soc. 2010;157(2):A214–A218. doi:10.1149/1.3271103.
  • Minami T, Hayashi A, Tatsumisago M. Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics. 2006;177(26-32):2715–2720. doi:10.1016/j.ssi.2006.07.017.
  • Hayashi A, Hama S, Morimoto H, et al. High lithium ion conductivity of glass-ceramics derived from mechanically milled glassy powders. Chem Lett. 2001;30(9):872–873. doi:10.1246/cl.2001.872.
  • Mizuno F, Hayashi A, Tadanaga K, et al. New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses. Adv Mater. 2005;17(7):918–921. doi:10.1002/adma.200401286.
  • Yamane H, Shibata M, Shimane Y, et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics. 2007;178(15-18):1163–1167. doi:10.1016/j.ssi.2007.05.020.
  • Tatsumisago M, Hayashi A. Superionic glasses and glass–ceramics in the Li2S–P2S5system for all-solid-state lithium secondary batteries. Solid State Ionics. 2012;225:342–345. doi:10.1016/j.ssi.2012.03.013.
  • Nagao M, Hayashi A, Tatsumisago M. Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochimica Acta. 2011;56:6055–6059. doi:10.1016/j.electacta.2011.04.084.
  • Ohta N, Takada K, Zhang L, et al. You have full text access to this contentEnhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater. 2006;18(17):2226–2229. doi:10.1002/adma.200502604.
  • Ohta N, Takada K, Sakaguchi I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun. 2007;9(7):1486–1490. doi:10.1016/j.elecom.2007.02.008.
  • Kanno R, Murayama M. Lithium ionic conductor Thio-LISICON: the Li2 S   GeS2   P 2 S 5 System. J Electrochem Soc. 2001;148(7):A742–A746. doi:10.1149/1.1379028.
  • Hong HYP. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bull. 1978;13(2):117–124. doi:10.1016/0025-5408(78)90075-2.
  • Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016;1(4):16030. doi:10.1038/nenergy.2016.30.
  • Fleming WJ. Physical principles governing nonideal behavior of the Zirconia Oxygen Sensor. J Electrochem Soc. 1977;124(1):21–28. doi:10.1149/1.2133235
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359–367. doi:10.1038/35104644.
  • Kummer JT, Weber N. Battery having a molten alkali metal anode and a molten sulfur cathode. U.S.Patent 3,413,150; 1968.
  • Yao YF, Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem. 1967;29:2453. doi:10.1016/0022-1902(67)80301-4.
  • Kennedy JH. The β-aluminas. In: Solid Electrolyte Geller S, editor. Berlin: Springer. p. 105-141. ISBN 978-3-540-37308-7. 1977. DOI:10.1007/3-540-08338-3
  • Oshima T, Kajita M, Okuno A. Development of sodium-sulfur batteries. Int J Appl Ceram Technol. 2004;1:269. doi:10.1111/j.1744-7402.2004.tb00179.x.
  • Okuyama R, Nomura E. Relationship between the total energy efficiency of a sodium-sulfur battery system acid the heat dissipation of the battery case. J Power Sources. 1999;77(2):164–169. doi:10.1016/S0378-7753(98)00190-6.
  • Funke K. Solid state ionics: from Michael Faraday to green energy—the European dimension. Sci Technol Adv Mater. 2013;14(4):043502. doi:10.1088/1468-6996/14/4/043502.