2,395
Views
40
CrossRef citations to date
0
Altmetric
Organic and soft materials (colloids, liquid crystals, gel, polymers)

Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

, , , , &
Pages 437-446 | Received 13 Feb 2017, Accepted 27 May 2017, Published online: 26 Jun 2017

References

  • Kim J-H, Shim BS, Kim HS, et al. Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Green Technol. 2015;2:197–213. 10.1007/s40684-015-0024-9
  • Kim J, Yun S, Ounaies Z. Discovery of cellulose as a smart material. Macromolecules. 2006;39:4202–4206. 10.1021/ma060261e
  • Yun S, Jang SD, Yun GY, et al. Electrically aligned cellulose film for electro-active paper and its piezoelectricity. Smart Mater Struct. 2009;18:117001.
  • Kim J-H, Mun S, Ko H–U, et al. Disposal chemical sensor and biosensors made on cellulose paper. Nanotechnology. 2009;25:092001.
  • Mun S, Zhai L, Min SK, et al. Flexible and transparent strain sensor made with silver nanowire–coated cellulose. J Intel Mat Syst Str. 2016;27:1011–1018. Doi:10.1177/1045389X15577651
  • Kafy A, Sadasivuni KK, Kim H-C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys. 2015;17:5923–5931. 10.1039/C4CP05921B
  • Yun S, Jang SD, Yun GY, et al. Paper transistor made with covalently bonded multiwall carbon nanotube and cellulose. Appl Phys Lett. 2009;95:104102.
  • Yadav M, Mun S, Hyun J, et al. Synthesis and characterization of iron oxide/cellulose nanocomposite film Int. J Biol Macromol. 2015;74:142–149. 10.1016/j.ijbiomac.2014.11.042
  • Mun S, Chen Y, Kim J. Cellulose-titanium dioxide-multiwalled carbon nanotube hybrid nanocomposite and its ammonia gas sensing properties at room temperature Sens. Actuator B-Chem. 2012;171-172:1186–1191. 10.1016/j.snb.2012.06.066
  • Mahadeva SK, Kim J. Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite Sens. Actuator B-Chem. 2011;157:177–182. 10.1016/j.snb.2011.03.046
  • Tian ZR, Voigt JA, Liu J, et al. Complex and oriented ZnO nanostructures Nat. Mater. 2003;2:821–826.
  • Morganti P. Use and potential of nanotechnology in cosmetic dermatology Clin. Cosmet Investig Dermatol. 2010;3:5–13. 10.2147/CCID
  • Kuo CL, Wang CL, Ko HH, et al. Synthesis of zinc oxide nanocrystalline powders for cosmetic applications Ceram. Int. 2010;36(2):693–698.
  • Wang XJ, Sun XW, Yang Y, et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology. 2006;17:4995–4998. 10.1088/0957-4484/17/19/037
  • Park KT, Xia SW, Kim SB, et al. Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J. Phys. Chem. C. 2013;117:1037–1043. 10.1021/jp310428r
  • Wang X, Song J, Wang ZL. Single-crystal nanocastles of ZnO Mater. Phys. Lett. 2006;424:86–89.
  • Jing Z, Zhan J. Fabrication and gas-sensing properties of porous ZnO nanoplates Adv. Mater. 2008;20:4547–4551.
  • Jeong HW, Choi S-Y, Hong SH, et al. Shape-dependent charge transfers in crystalline ZnO photocatalysts: rods versus plates. J. Phys. Chem. C. 2014;118:21331–21338. 10.1021/jp506032f
  • Özgür Ü, Alivov Y, Liu C, et al. Comprehensive review of ZnO materials and device. J. App. Phys. 2005;98:041301.
  • Xu L, Li X, Zhan Z, et al. Catalyst-free, selective growth of ZnO nanowires on SiO2 by Chemical vapor deposition for transfer-free fabrication of UV photodetectors ACS. Appl Mater Inter. 2015;7:20264–20271. 10.1021/acsami.5b05811
  • Jia C, Chen Y, Liu G, et al. Growth of c-oriented ZnO films on (001) SrTiO3 substrates by MOCVD. J Cryst Growth. 2008;311(1):200–204. 10.1016/j.jcrysgro.2008.10.017
  • Sun Y, Fuge GM, Ashfold MNR. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods Chem. Phys Lett. 2004;396:21–26.
  • Huang MH, Wu Y, Fetick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport Adv. Mater. 2001;13(2):113–116.
  • Rao TP, Santhoshkumar MC. Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis Appl. Surf Sci. 2009;255(8):4579–4584.
  • Sun X, Huang J, Wang J, et al. A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 2008;8(4):1219–1223. 10.1021/nl080340z
  • Chen Q, Shi S, Zhang W. Study on luminescence characteristic of ZnO/polymer hybrid films. Colloid Pol Sci. 2009;287:533–540. 10.1007/s00396-009-1999-y
  • Hatch S, Briscoe J, Dunn S. A self-powered ZnO-nanorod/CuSCN UV Photodetector exhibiting rapid response Adv. Mat. 2013;25(6):867–871.
  • Manekkathodi A, Lu MY, Wang CW, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics Adv. Mater. 2010;22:4059–4063.
  • Li Y, Valle F, Simonnet M, et al. Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires Appl. Phys Lett. 2009;94(2):023110.
  • Zhou Z, Zhao Y, Cai Z. Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal methods Appl. Surf Sci. 2010;256:4724–4728. 10.1016/j.apsusc.2010.02.081
  • Yao I, Tseng T, Lin P. ZnO nanorods grown on polymer substrates as UV photodetectors Sens. Actuator A-Phys. 2012;178:26–31. 10.1016/j.sna.2012.01.045
  • Ladanov M, Ram M, Matthews G, et al. Structure and opto-electorchemical properties of ZnO nanowires grown on n-Si substrate. Langmuir. 2011;27:9012–9017. 10.1021/la200584j
  • Hu Y, Lin L, Zhang Y, et al. Replacing a battery by a nanogenerator with 20 V output Adv. Mater. 2012;24:110–114.
  • Mun S, Ko H-U, Zhai L, et al. Enhanced electromechanical behavior of cellulose film by ZnO nanocoating and its vibration energy harvesting. Acta Mater. 2016;114:1–6.
  • Gullapalli H, Vemuru VSM, Kumar A, et al. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small. 2010;6:1641–1646. 10.1002/smll.v6:15
  • Ko H-U, Mun S, Min S-K, et al. Fabrication of cellulose ZnO Hybrid Nanocomposite and its strain sensing behavior. Materials. 2014;7:7000–7009.
  • Jung Y, Jun T, Kim A, et al. Direct photopatternable organic–inorganic hybrid gate dielectric for solution-processed flexible ZnO thin film transistors. J Mater Chem. 2011;21:11879. 10.1039/c1jm10791g
  • Zhou J, He Z, Jin H, et al. Crystalline structure effect on the performance of flexible ZnO/polyimide surface acoustic wave devices. J Appl Phys. 2013;114:044502. 10.1063/1.4816002
  • Nirmal Peiris TAN, Alessa H, Sagu JS, et al. Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells. J. Nanopart. Res. 2013;15:333. 10.1007/s11051-013-2115-2
  • Yi J, Lee JM, Park WI. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors Sens. Actuator B-Chem. 2011;155:264–269. 10.1016/j.snb.2010.12.033
  • Hsueh HT, Hsueh TJ, Chang SJ, et al. A Flexible ZnO nanowire-based humidity sensor IEEE Trans. Nanotechnol. 2012;11(3):520–525.
  • Faure B, Salazar-Alvarez G, Ahniyaz A, et al. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens Sci. Technol. Adv. Mater. 2013;14:023001. 10.1088/1468-6996/14/2/023001
  • Zhang X, Qin J, Xue Y, et al. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods Sci. Rep. 2014;4:4596.
  • Shah AH, Manikandan E, Basheer-Ahmed M, et al. Enhanced bioactivity of Ag/ZnO nanorods-A comparative antibacterial study. J. Nanomed. Nanotechol. 2103;4(3):1000168.
  • Pauporté T, Jouanno E, Pellé F, et al. Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature. J Phys Chem C. 2009;113:10422–10431. 10.1021/jp9010179
  • Gonçalves G, Marques P, Neto CP, et al. Growth, structural, and optical characterization of ZnO-coated cellulosic fibers Cryst. Growth Des. 2009;9(1):386–390. 10.1021/cg800596z
  • Zainelabdin A, Zaman S, Amin G, et al. Stable white light electroluminescence from highly flexible polymer/ZnO nanorods hybrid heterojunction grown at 50 & #xB0;C. Nanoscale Res Lett. 2010;5:1442–1448.
  • Kim DY, Lee S, Lin Z, et al. High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators. Nano Energy. 2014;9:101–111. 10.1016/j.nanoen.2014.07.004
  • Ong WL, Low QX, Huang W, et al. Patterned growth of vertically-aligned ZnO nanorods on a flexible platform for feasible transparent and conformable electronics applications. J. Mater. Chem. 2012;22:8518–8524. 10.1039/c2jm00027j
  • Zheng ZQ, Yao JD, Wang B, et al. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices Sci. Rep. 2015;5:11070.
  • Jablonski NG, Chaplin G. Human skin pigmentation as an adaptation to UV radiation Proc. Natl. Acad. Sci. U.S.A. 2010;107:8962–8968. 10.1073/pnas.0914628107
  • Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer Inter. J. Dermatol. 2010;49:978–986.