1,106
Views
9
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

EDTA-assisted phase conversion synthesis of (Gd0.95RE0.05)PO4 nanowires (RE = Eu, Tb) and investigation of photoluminescence

, , , , , , & show all
Pages 447-457 | Received 18 Feb 2017, Accepted 31 May 2017, Published online: 28 Jun 2017

References

  • Wang ZL. Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater. 2000;12:1295–1298.10.1002/(ISSN)1521-4095
  • Xia YN, Yang PD, Sun YG, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2000;15:353–389.
  • Wang X, Sun XM, Yu DP, et al. Rare earth compound nanotubes. Adv Mater. 2003;15:1442–1445.10.1002/(ISSN)1521-4095
  • Wang X, Li YD. Synthesis and characterization of Lanthanide Hydroxide single-crystal nanowires. Angew Chem Int Ed. 2002;41:4790–4793.10.1002/(ISSN)1521-3773
  • ZH Wang, J-G Li, Q Zhu, et al. Tartrate promoted hydrothermal growth of highly [001] oriented (La0.95-xBixEu0.05)PO4 (x=0-0.01) nanowires with enhanced photoluminescence. Mater Des. 2017;126:115–122.
  • Wang X, Li YD. Rare-Earth-Compound nanowires, nanotubes, and fullerene-like Nanoparticles: synthesis, characterization, and properties. Chem Eur J. 2003;9:5627–5635.10.1002/(ISSN)1521-3765
  • Meiser F, Cortez C, Caruso F, et al. Biofunctionalization of fluorescent rare-earth-doped Lanthanum Phosphate Colloidal Nanoparticles. Angew Chem Int Ed. 2004;43:5954–5957.10.1002/(ISSN)1521-3773
  • Lehmann O, Meyssamy H, Kompe K, et al. Synthesis, growth, and Er3+ luminescence of lanthanide phosphate Nanoparticles. J Phys Chem B. 2003;107:7449–7453.10.1021/jp030012h
  • Wang M, Li M, Yang MY, et al. NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb, Er upconversion Nanoparticles in a dry powder state. Nano Res. 2015;8:1800–1810.10.1007/s12274-014-0686-6
  • Yang J, Li CX, Cheng ZY, et al. Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3: Eu3+ nanorods and microrods. J Phys Chem C. 2007;111:18148–18154.10.1021/jp0767112
  • Mao CB, Li HD, Cui FZ, et al. The functionalization of titanium with EDTA to induce biomimetic mineralization of hydroxyapatite. J Mater Chem. 1999;9:2573–2582.10.1039/a901309a
  • Huang P, Chen DQ, Wang YS. Host-sensitized multicolor tunable luminescence of lanthanide ion doped one-dimensional YVO4 nano-crystals. J Alloy Compd. 2011;509:3375–3381.10.1016/j.jallcom.2010.12.069
  • Fang YP, Xu AW, Song RQ, et al. Systematic synthesis and characterization of single-crystal Lanthanide Orthophosphate nanowires. J Am Chem Soc. 2003;25:16025–16304.10.1021/ja037280d
  • Schuetz P, Caruso F. Electrostatically assembled fluorescent thin films of rare-earth-doped Lanthanum Phosphate Nanoparticles. Chem Mater. 2002;14:4509–4516.10.1021/cm0212257
  • Li J-G, Li XD, Sun XD, et al. Monodispersed colloidal spheres for uniform Y2O3: Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J Phys Chem C. 2008;112:11707–11716.10.1021/jp802383a
  • Li JK, Li J-G, Liu SH, et al. Greatly enhanced Dy3+ emission via efficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu3+. J Mater Chem C. 2013;1:7614–7622.10.1039/c3tc31413h
  • Zhang LH, Yin ML, You HP, et al. Mutifuntional GdPO4:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties. Inorg Chem. 2011;50:10608–10613.10.1021/ic200867a
  • Huang C-C, Lo Y-W, Kuo W-S, et al. Facile preparation of self-assembled hydrogel-like GdPO4·H2O nanorods. Langmuir. 2008;24:8309–8313.10.1021/la800847d
  • Yu LX, Li DC, Yue MX, et al. Dependence of morphology and photoluminescent properties of GdPO4: Eu3+ nanostructures on synthesis condition. Chem Phys. 2006;326:478–482.10.1016/j.chemphys.2006.03.008
  • Guo H, Li F, Wei RF, et al. Elaboration and luminescent properties of Eu/Tb co-doped GdPO4-Based glass ceramics for white LEDs. J Am Ceram Soc. 2012;95:1178–1181.10.1111/j.1551-2916.2012.05097.x
  • Wu XL, Li J-G, Zhu Q, et al. One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3·nH2O) nanosheets for a wide spectrum of Ln (Ln = Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence. J Mater Chem C. 2015;3:3428–3437.10.1039/C4TC02681K
  • Gandara F, Perles J, Snejko N, et al. Layered rare-earth hydroxides: a class of pillared crystalline compounds for intercalation chemistry. Angew Chem Int Ed. 2006;45:7998–8001.10.1002/(ISSN)1521-3773
  • Geng FX, Matsushita Y, Ma RZ, et al. General synthesis and structural evolution of a layered family of Ln(8)(OH)(20)Cl-4·nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). J Am Chem Soc. 2008;130:16344–16350.10.1021/ja807050e
  • Zhu Q, Li J-G, Zhi CY, et al. Layered rare-earth hydroxides (LRHs) of (Y1-xEux)2(OH)5NO3·nH2O (x = 0-1): structural variations by Eu3+ doping, phase conversion to oxides, and the correlation of photoluminescence behaviors. Chem Mater. 2010;22:4204–4213.10.1021/cm1011586
  • Lu B, Li J-G, Sun XD, et al. Effects of Gd substitution on sintering and optical properties of highly transparent (Y0.95-xGdxEu0.05)(2)O(3) Ceramics. J Am Ceram Soc. 2015;98:2480–2487.10.1111/jace.2015.98.issue-8
  • Wang ZH, Li J-G, Zhu Q, et al. Sacrificial conversion of layered rare-earth hydroxide (LRH) nanosheets into (Y1−xEux)PO4 nanophosphors and investigation of photoluminescence. Dalton Trans. 2016;45:5290–5299.10.1039/C5DT01983D
  • Yang M, You HP, Jia G, et al. Selective synthesis of hexagonal and monoclinic LaPO4:Eu3+ nanorods by a hydrothermal method. J Cryst Growth. 2009;311:4753–4758.10.1016/j.jcrysgro.2009.09.027
  • ZH Wang, J-G Li, Q Zhu, et al. Hydrothermal conversion of layered hydroxide nanosheets into (Y0.95Eu0.05)PO4 and (Y0.96-xTb0.04Eux)PO4 (x = 0-0.10) nanocrystals for red and color-tailorable emission. RSC Adv. 2016;6:22690–22699.10.1039/C6RA00434B
  • Yan RX, Sun XM, Wang X, et al. Crystal structures, anisotropic growth, and optical properties: controlled synthesis of Lanthanide Orthophosphate one-dimensional nanomaterials. Chem Eur J. 2005;11:2183–2195.10.1002/(ISSN)1521-3765
  • Firsching FH, Brune SN. Solubility products of the trivalent rare-earth phosphates. J Chem Eng Data. 1991;36:93–95.10.1021/je00001a028
  • Deng H, Liu CM, Yang SH, et al. Additive-Mediated splitting of Lanthanide Orthovanadate Nanocrystals in water: morphological evolution from rods to sheaves and to spherulites. Cryst Growth Des. 2008;8:4432–4439.10.1021/cg800207z
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658.10.1107/S0021889808012016
  • Geng DL, Shang MM, Yang DM, et al. Tunable luminescence and energy transfer properties in KCaGd(PO4)(2):Ln(3+)/Mn(2+) (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies. J Mater Chem. 2012;22:23789–23798.10.1039/c2jm34991d
  • Hezel, A, Ross, SD. Forbidden transitions in infra-red spectra of teterhedral anions 3. spectra-structure correlations in perchlorates sulphates and phosphates of formular MXO4. Spectrochim Acta. 1996;22:1949–1961.
  • Murphy KE, Altman MB, Wunderlich B. Monoclinic-to-trigonal transformation in selenium. J Appl Phys. 1977;48:4122–4131.10.1063/1.323439
  • Kijkowska R, Cholewka E, Duszak B. X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallisation from phosphoric acid solution. J Mater Sci. 2003;38:223–228.10.1023/A:1021188810349
  • Li YH, Hong GY. Synthesis and luminescence properties of nanocrystalline Gd2O3: Eu3+ by combustion process. J Lumin. 2007;124:297–301.10.1016/j.jlumin.2006.03.016
  • Judd BR. Optical absorption intensities of rare-earth ions. Phys Rev. 1962;127:750–761.10.1103/PhysRev.127.750
  • Gorller-Walrand C, Binnemans K. Handbook on the physics and chemistry of rare earths. Amsterdam (Netherlands): Elsevier Academic Press; 1998. Chapter 167, Spectral intensities of f-f transitions; p. 101–264.
  • Sá Ferreiraa RA, Nobrea SS, Granadeirob CM, et al. A theoretical interpretation of the abnormal 5D0-7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J Lumin. 2006;121:561–567.10.1016/j.jlumin.2005.12.044
  • Lu SZ, Zhang JH, Zhang JS, et al. Remarkably enhanced photoluminescence of hexagonal GdPO4·nH2O: Eu with decreasing size. Nanotechnol. 2010;21:365709.10.1088/0957-4484/21/36/365709
  • Yaiphaba N, Ningthoujam RS, Singh NS, et al. Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration effects. J Appl Phys. 2010;107:034301.10.1063/1.3294964
  • Zhu Q, Li J-G, Ma RZ, et al. Well-defined crystallites autoclaved from the nitrate/NH4OH reaction system as the precursor for (Y, Eu)2O3 red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property. J Solid State Chem. 2012;192:229–237.10.1016/j.jssc.2012.04.015