2,254
Views
36
CrossRef citations to date
0
Altmetric
Focus on Overview of innovative materials for energy

Mo6 cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence

, ORCID Icon, , , , , ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 458-466 | Received 23 Mar 2017, Accepted 01 Jun 2017, Published online: 03 Jul 2017

References

  • Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci. 2006;103(43):15729–15735.10.1073/pnas.0603395103
  • Ariga K, Hill JP, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys. 2007;9:2319–2340.10.1039/b700410a
  • Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–3623.10.1039/c2cs15325d
  • Ghosh B, Shirahata N. Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater. 2014;15(1):014207–14214.10.1088/1468-6996/15/1/014207
  • Sun HT, Sakka Y. Luminescent metal nanoclusters: controlled synthesis and functional applications. Sci Technol Adv Mater. 2014;15(1):014205–014213.10.1088/1468-6996/15/1/014205
  • Cordier S, Grasset F, Molard Y, et al. Inorganic molybdenum octahedral nanosized cluster units, versatile functional building block for nanoarchitectonics. J Inorg Organomet Polym. 2015;25(2):189–204.10.1007/s10904-014-0112-2
  • Perrin A, Perrin C. The molybdenum and rhenium octahedral cluster chalcohalides in solid state chemistry: from condensed to discrete cluster units. C R Chim. 2012;15(9):815–836.10.1016/j.crci.2012.07.004
  • Fedorov V. As they were born in Siberia. J Clust Sci. 2015;26(1):3–15
  • Kuttipillai PS, Zhao Y, Traverse CJ, et al. Phosphorescent nanocluster light-emitting diodes. Adv Mater. 2016;28(2):320–326.10.1002/adma.201504548
  • Molard Y. Liquid crystalline hybrid nanomaterials containing functional metal nanoclusters. Acc Chem Res. 2016;49:1514–1523.
  • Lunt RR, Kuttipillai PS, inventor. Nanocluster based light emitting device. United States patent US 2015/0069366 A1. 2015 Mar 12.
  • Zhao Y, Lunt RR. Transparent luminescent solar concentrators for large-area solar windows enabled by massive stokes-shift nanocluster phosphors. Adv Energy Mater. 2013;3(9):1143–1148.10.1002/aenm.v3.9
  • Zhao Y, Meek GA, Levine BG, et al. Near-infrared harvesting transparent luminescent solar concentrators. Adv Opt Mater. 2014;2(7):606–611.10.1002/adom.201400103
  • Renaud A, Grasset F, Dierre B, et al. Inorganic molybdenum clusters as light-harvester in all inorganic solar cells: a proof of concept. ChemistrySelect. 2016;1(10):2284–2289.10.1002/slct.201600508
  • Aubert T, Cabello-Hurtado F, Esnault MA, et al. Extended investigations on luminescent Cs2[Mo6Br 14]@SiO2 nanoparticles: physico-structural characterizations and toxicity studies. J Phys Chem C. 2013;117(39):20154–20163.10.1021/jp405836q
  • Kirakci K, Kubát P, Fejfarová K, et al. X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: a new class of nanoscintillators. Inorg Chem. 2016;55(2):803–809.10.1021/acs.inorgchem.5b02282
  • Solovieva AO, Vorotnikov YA, Trifonova KE, et al. Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo6I8}4+ metal clusters. J Mater Chem B. 2016;4:4839–4846.10.1039/C6TB00723F
  • Neaime C, Amela-Cortes M, Grasset F, et al. Time-gated luminescence bioimaging with new luminescent nanocolloids based on [Mo6I8(C2F5COO)6]2− metal atom clusters. Phys Chem Chem Phys. 2016;18:30166–30173.10.1039/C6CP05290H
  • Beltrán A, Mikhailov M, Sokolov MN, et al. A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. J Mater Chem B. 2016;4:5975–5979.10.1039/C6TB01966H
  • Truong TG, Dierre B, Grasset F, et al. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films. Sci Technol Adv Mater. 2016;17(1):443–453.10.1080/14686996.2016.1202724
  • Nguyen TKN, Grasset F, Dierre B, et al. Fabrication of transparent thin film of octahedral molybdenum metal clusters by electrophoretic deposition. ECS J Solid State Sci Technol. 2016;5(10):R178–R186.10.1149/2.0291610jss
  • Chevrel R, Sergent M, Prigent J. Sur de nouvelles phases sulfurées ternaires du molybdène [On novel ternary molybdenum sulfide phases]. J Solid State Chem. 1971;3:515–519 French.
  • Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature. 2000;407:724–727.10.1038/35037553
  • Aurbach D, Suresh SG, Levi E, et al. Progress in rechargeable magnesium battery technology. Adv Mater. 2007;19(23):4260–4267.10.1002/(ISSN)1521-4095
  • Gougeon P, Gall P, Al Rahal Al Orabi R, et al. Synthesis, crystal and electronic structures, and thermoelectric properties of the novel cluster compound Ag3In2Mo15Se19. Chem Mater. 2012;24(15):2899–2908.10.1021/cm3009557
  • Fujii S, Horiguchi T, Akagi S, et al. Quasi-one-step six-electron electrochemical reduction of an octahedral hexanuclear molybdenum(II) cluster. Inorg Chem. 2016;55(20):10259–10266.10.1021/acs.inorgchem.6b01525
  • Potel M, Perrin C, Perrin A, et al. New families of ternary molybdenum (II) chlorides with octahedral Mo6 clusters. Mat Res Bull. 1986;21(10):1239–1245.10.1016/0025-5408(86)90053-X
  • Saito N, Wada Y, Lemoine P, et al. Theoretical and experimental determination of the crystal structures of cesium–molybdenum chloride. Jpn J Appl Phys. 2016;55:075502.10.7567/JJAP.55.075502
  • Costuas K, Garreau A, Bulou A, et al. Combined theoretical and time-resolved photoluminescence investigations of [Mo6Bri8Bra6]2− metal cluster units: evidence of dual emission. Phys Chem Chem Phys. 2015;17:28574–28585.10.1039/C5CP03960F
  • Kirakci K, Kubát P, Langmaier J, et al. A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Trans. 2013;42:7224–7232.10.1039/c3dt32863e
  • Dierre B, Yuan XL, Sekiguchi T. Low-energy cathodoluminesence microscopy for the characterization of nanostructures. Sci Technol Adv Mater. 2010;11:043001.10.1088/1468-6996/11/4/043001
  • Kirakci K, Cordier S, Perrin C. Synthesis and characterization of Cs2Mo6X14 (X = Br or I) hexamolybdenum cluster halides: efficient Mo6 cluster precursors for solution chemistry syntheses. Z Anorg Allg Chem. 2005;631(2-3):411–416.10.1002/(ISSN)1521-3749
  • Schäfer H, Schnering HGV, Tillack J, et al. Neue Untersuchungen über die Chloride des Molybdäns. Z Anorg Allg Chem. 1967;353(5-6):281–310.10.1002/(ISSN)1521-3749
  • Sheldon JC. Polynuclear complexes of molybdenum(II). Nature. 1959;184:1210–1213.10.1038/1841210a0
  • Sheldon JC. Chloromolybdenum(II) compounds. J Chem Soc. 1960;1007–1014.10.1039/jr9600001007
  • Cotton FA, Curtis NF. Some new derivatives of the octa-μ3-chlorohexamolybdate(II),[Mo6Cl8]4+, ion. Inorg Chem. 1965;4(2):241–244.10.1021/ic50024a025
  • Sokolov MN, Mikhailov MA, Peresypkina EV, et al. Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2− (X = Br, I). Dalton Trans. 2011;40:6375–6377.10.1039/c1dt10376h
  • Kirakci K, Kubát P, Dušek M, et al. A highly luminescent hexanuclear molybdenum cluster – A promising candidate toward photoactive materials. Eur J Inorg Chem. 2012;2012(19):3107–3111.10.1002/ejic.v2012.19
  • Sokolov MN, Mikhailov MA, Brylev KA, et al. Alkynyl complexes of high-valence clusters. Synthesis and luminescence properties of [Mo6I8(C≡CC(O)OMe)6]2-, the first complex with exclusively organometallic outer ligands in the family of octahedral M6X8 clusters. Inorg Chem. 2013;52(21):12477–12481.10.1021/ic401377g
  • Efremova OA, Shestopalov MA, Chirtsova NA, et al. A highly emissive inorganic hexamolybdenum cluster complex as a handy precursor for the preparation of new luminescent materials. Dalton Trans. 2014;43:6021–6025.10.1039/c3dt53126k
  • Kirakci K, Fejfarová K, Kučeráková M, et al. Hexamolybdenum cluster complexes with pyrene and anthracene carboxylates: ultrabright red emitters with the antenna effect. Eur J Inorg Chem. 2014;14:2331–2336.10.1002/ejic.201402076
  • Kirakci K, Kubát P, Kučeráková M, et al. Water-soluble octahedral molybdenum cluster compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: syntheses, luminescence, and in vitro studies. Inorg Chim Acta. 2016;441:42–49.10.1016/j.ica.2015.10.043
  • Mikhailov MA, Brylev KA, Virovets AV, et al. Complexes of Mo6I8 with nitrophenolates: synthesis and luminescence. New J Chem. 2016;40(2):1162–1168.10.1039/C5NJ02246K
  • Mikhailov MA, Brylev KA, Abramov PA, et al. Synthetic tuning of redox, spectroscopic, and photophysical properties of {Mo6I8}4+ core cluster complexes by terminal carboxylate ligands. Inorg Chem. 2016;55(17):8437–8445.10.1021/acs.inorgchem.6b01042
  • Vorotnikov YA, Mikhailov MA, Brylev KA, et al. Synthesis, crystal structure, and luminescence properties of complexes (4-ViBnNMe3)2[{M6(μ3-I)8}I6] (M = Mo, W; (4-ViBnNMe3)+ is trimethyl(4-vinylbenzyl)ammonium). Russ Chem Bull. 2015;64(11):2591–2596.10.1007/s11172-015-1194-x
  • Maverick AW, Najdzionek JS, MacKenzie D, et al. Spectroscopic, electrochemical, and photochemical properties of molybdenum(II) and tungsten(II) halide clusters. J Am Chem Soc. 1983;105(7):1979–1882.
  • Amela-Cortes M, Molard Y, Paofai S, et al. Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Qi8La6]n- octahedral nano-building blocks. Dalton Trans. 2016;45:237–245.10.1039/C5DT03734D
  • Katan C, Pedesseau L, Kepenekian M, et al. Interplay of spin–orbit coupling and lattice distortion in metal substituted 3D tri-chloride hybrid perovskites. J Mater Chem A. 2015;3:9232–9240.10.1039/C4TA06418F
  • Slavney AH, Smaha RW, Smith IC, et al. Chemical approaches to addressing the instability and toxicity of lead−halide perovskite absorbers. Inorg Chem. 2017;56:46–55.10.1021/acs.inorgchem.6b01336
  • Ramirez-Tagle R, Arratia-Pérez R. Electronic structure and molecular properties of the [Mo6X8L6]2−; X = Cl, Br, I; L = F, Cl, Br, I clusters. Chem Phys Lett. 2008;460(4–6):438–441.10.1016/j.cplett.2008.06.035
  • Ramirez-Tagle R, Arratia-Pérez R. The luminescent [Mo6X8(NCS)6]2− (X = Cl, Br, I) clusters: a computational study based on time-dependent density functional theory including spin–orbit and solvent-polarity effects. Chem Phys Lett. 2008;455(1-3):38–41.10.1016/j.cplett.2008.02.037
  • Efremova OA, Vorotniknov YA, Brylev KA, et al. Octahedral molybdenum cluster complexes with aromatic sulfonate ligands. Dalton Trans. 2016;45:15427–15435.10.1039/C6DT02863B
  • El Mendili Y, Bardeau JF, Randrianantoandro N, et al. Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix: γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci Technol Adv Mater. 2016;17(1):597–609.10.1080/14686996.2016.1222494
  • Bertoni R, Lorenc M, Cailleau H, et al. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nature Mater. 2016;15:606–610.10.1038/nmat4606
  • Grasset F, Dorson F, Cordier S, et al. Water-in-oil microemulsion preparation and characterization of Cs2[Mo6X14]@SiO2 phosphor nanoparticles based on transition metal clusters (X = Cl, Br, and I). Adv Mat. 2008;20(1):143–148.10.1002/(ISSN)1521-4095
  • Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron. 2004;35(6):399–409.10.1016/j.micron.2004.02.003
  • Nagatomi T, Nakamura H, Takai Y et al. Approach to quantitative evaluation of electron-induced degradation of SiO2 film surface with different amounts of carbon contaminations. e-J Surf Sci Nanotech 2011;9:277–288.10.1380/ejssnt.2011.277
  • Efremova OA, Brylev KA, Vorotnikov YA, et al. Photoluminescent materials based on PMMA and a highly-emissive octahedral molybdenum metal cluster complex. J Mat Chem C. 2016;4:497–503.10.1039/C5TC03204K
  • Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 2012;492:234–238.10.1038/nature11687