5,824
Views
48
CrossRef citations to date
0
Altmetric
New topics/Others

MDTS: automatic complex materials design using Monte Carlo tree search

, , , , &
Pages 498-503 | Received 25 Apr 2017, Accepted 15 Jun 2017, Published online: 20 Jul 2017

References

  • Seko A, Togo A, Hayashi H, et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901.
  • Balachandran PV, Xue D, Theiler J, et al. Adaptive strategies for materials design using uncertainties. Sci Rep. 2016;6:19660.
  • Okhotnikov K, Charpentier T, Cadars S. Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J Cheminf. 2016;8(1):17. DOI: 10.1186/s13321-016-0129-3
  • Ju S, Shiga T, Feng L, et al. Designing nanostructures for phonon transport via Bayesian optimization. Phys Rev X. 2017;7:021024.
  • Coulinga D, Bernotb R, Dochertyb KM, et al. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem. 2006;8:82–90.
  • Snoek J, Larochelle H, Adams R. Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst. 2012;2951–2959.
  • Ueno T, Rhone T, Hou Z, et al. COMBO: an efficient Bayesian optimization library for materials science. Mater Discov. 2016;4:18–21.
  • Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations: application to melting temperatures of single-and binary-component solids. Phys Rev B. 2014;89:054303.
  • Kiyohara S, Oda H, Tsuda K, et al. Acceleration of stable interfacestructure searching using a kriging approach. Jpn J Appl Phys. 2016;55:045502.
  • Patra TK, Meenakshisundaram V, Hung J, et al. Neural-network-biased genetic algorithms for materials design: Evolutionary algorithms that learn. ACS Comb Sci. 2017;19(2):96–107.
  • Paszkowicz W, Harris KD, Johnston RL. Genetic algorithms: a universal tool for solving computational tasks in materials science. Comput Mater Sci. 2009;45(1):ix–x.
  • Browne C, Powley E, Whitehouse D, et al. A survey of Monte Carlo tree search methods. IEEE Trans Comput Intell AI in Games. 2012;4(1):1–43.
  • Silver D, Huang A, Maddison C, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–489.
  • Murakami T, Hori T, Shiga T, et al. Probing and tuning inelastic phonon conductance across finite-thickness interface. Appl Phys Express. 2014;7:121801.
  • Murakami T, Shiga T, Hori T, et al. Importance of local force fields on lattice thermal conductivity reduction in PbTe1–xSex alloys. EPL. 2013;102:46002.
  • Kocsis L, Szepesvári C. Bandit based monte-carlo planning. European conference on machine learning. Berlin: Springer; 2006. p. 282–293.
  • Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Meth Appl Mech Eng. 2004;193:1773–1788.
  • Griebel M, Knapek S, Zumbusch G. Numerical simulation in molecular dynamics. Vol. 5, Texts in computational science and engineering. Springer-Verlag, Berlin Heidelberg; 2007.
  • Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566(R).
  • Tersoff J. Erratum: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1990;41:3248.