4,394
Views
40
CrossRef citations to date
0
Altmetric
Focus on advanced nanoprocessing and applications in sensorics

Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications

, , , , , & show all
Pages 528-540 | Received 24 May 2017, Accepted 18 Jun 2017, Published online: 20 Jul 2017

References

  • Ryan CC, Pemble ME, Bardosova M. Current trends in chitosan-related research in the biomedical field: a short review. Nat Prod Commun. 2017;12:855–861.
  • Mourya V, Inamdar NN. Chitosan-modifications and applications: opportunities galore. React Funct Polym. 2008;68:1013–1051. 10.1016/j.reactfunctpolym.2008.03.002
  • Ravi Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27. 10.1016/S1381-5148(00)00038-9
  • Ryan C, Delezuk J, Pavinatto A, et al. Silica-based photonic crystals embedded in a chitosan-TEOS matrix: preparation, properties and proposed applications. J Mater Sci. 2016;51:5388–5396. 10.1007/s10853-016-9841-7
  • Dash M, Chiellini F, Ottenbrite R, et al. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014. 10.1016/j.progpolymsci.2011.02.001
  • Rong Huei C, Hwa H-D. Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr Polym. 1996;29:353–358. 10.1016/S0144-8617(96)00007-0
  • Iosody Silva-Castro PM-R, Matei PM, Fernandes-Correa M, et al. Eco-Friendly nanocomposites of chitosan with natural extracts, antimicrobial agents, and nanometals. In: VK Thakur MKT, MR Kessler, editor. Handbook of composites from renewable materials volume 8, nanocomposites: advanced applications. New York, NY: Wiley; 2017. p. 35–60.
  • Jabeen S, Kausar A, Saeed S, et al. Poly(vinyl alcohol) and chitosan blend cross-linked with bis phenol-F-diglycidyl ether: mechanical, thermal and water absorption investigation. J Chinese Adv Mater Soc. 2016;4:211–227. 10.1080/22243682.2016.1192958
  • Trung TS, Thein-Han WW, Qui NT, et al. Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresour Technol. 2006;97:659–663. 10.1016/j.biortech.2005.03.023
  • Park S-B, You J-O, Park H-Y, et al. A novel pH-sensitive membrane from chitosan — TEOS IPN; preparation and its drug permeation characteristics. Biomaterials. 2001;22:323–330. 10.1016/S0142-9612(00)00187-3
  • Xia W, Liu P, Zhang J, et al. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011;25:170–179. 10.1016/j.foodhyd.2010.03.003
  • Liu J, Huang Y, Kumar A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32:693–710. 10.1016/j.biotechadv.2013.11.009
  • Matei PM, Martín-Ramos P, Sánchez-Báscones M, et al. Synthesis of chitosan oligomers/propolis/silver nanoparticles composite systems and study of their activity against diplodia seriata. Int J Polym Sci. 2015;2015:1–11. 10.1155/2015/864729
  • Liu N, Chen X-G, Park H-J, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym. 2006;64:60–65. 10.1016/j.carbpol.2005.10.028
  • Li Z, Yang F, Yang R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int J Biol Macromolec. 2015;75:378–387. 10.1016/j.ijbiomac.2015.01.056
  • Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004;95:147–155. 10.1016/j.ijfoodmicro.2004.01.022
  • Devlieghere F, Vermeulen A, Debevere J. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004;21:703–714. 10.1016/j.fm.2004.02.008
  • Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromolec. 2016;85:467–475. 10.1016/j.ijbiomac.2016.01.022
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–121. 10.1016/j.jare.2013.07.006
  • Jenkins A, Kratochvil P, Stepto R, et al. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl Chem. 1996;68:2287–2311.
  • Li B, Shan C-L, Zhou Q, et al. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs. 2013;11:1534. 10.3390/md11051534
  • Salehi R, Arami M, Mahmoodi NM, et al. Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids Surf B. 2010;80:86–93. 10.1016/j.colsurfb.2010.05.039
  • Vasconcelos HL, Camargo TP, Gonçalves NS, et al. Chitosan crosslinked with a metal complexing agent: synthesis, characterization and copper(II) ions adsorption. React Funct Polym. 2008;68:572–579. https://doi.org/10.1016/j.reactfunctpolym.2007.10.024https://doi.org/10.1016/j.ympev.2007.09.007
  • Tsai W-B, Chen Y-R, Liu H-L, et al. Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydr Polym. 2011;85:129–137. 10.1016/j.carbpol.2011.02.003
  • Yeh J-T, Chen C-L, Huang K-S. Synthesis and properties of chitosan/SiO2 hybrid materials. Mater Lett. 2007;61:1292–1295. 10.1016/j.matlet.2006.07.016
  • Tsai GJ, Wu ZY, Su WH. Antibacterial activity of a chitooligosaccharide mixture prepared by cellulase digestion of shrimp chitosan and its application to milk preservation. J Food Prot. 2000;63:747–752. Epub 2000/06/14. 10.4315/0362-028X-63.6.747
  • Sperling LH. Interpenetrating polymer networks and related materials: Springer Science & Business Media. Softcover reprint of the hardcover 1st edition 1981, New York NY: Plenum Press; 2012. p. 265.
  • Ryan CC, Bardosova M, Pemble ME. Structural and mechanical properties of a range of chitosan-based hybrid networks loaded with colloidal silica and polystyrene particles. J Mater Sci. 2017;52:8338–8347. 10.1007/s10853-017-1051-4
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44:2169–2175. 10.1021/es9035557
  • Martínez-Gutierrez F, Thi EP, Silverman JM, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomed Nanotech Biol Med. 2012;8:328–336. 10.1016/j.nano.2011.06.014
  • González-Campos JB, Mota-Morales JD, Kumar S, et al. New insights into the bactericidal activity of chitosan-Ag bionanocomposite: the role of the electrical conductivity. Colloids Surf B. 2013;111:741–746. 10.1016/j.colsurfb.2013.07.003
  • Vimala K, Mohan YM, Sivudu KS, et al. Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B. 2010;76:248–258. 10.1016/j.colsurfb.2009.10.044
  • Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, et al. Chitosan/silver nanocomposites: synergistic antibacterial action of silver nanoparticles and silver ions. European Polym J. 2015;67:242–251. 10.1016/j.eurpolymj.2015.03.066
  • Pérez-Díaz MA, Boegli L, James G, et al. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C. 2015;55:360–366. 10.1016/j.msec.2015.05.036
  • Lynch AS, Robertson GT. Bacterial and fungal biofilm infections. Annu Rev Med. 2008;59:415–428. Epub 2007/10/17. 10.1146/annurev.med.59.110106.132000
  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:1–10.
  • Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med. 2007;3:95–101. 10.1016/j.nano.2006.12.001
  • Umadevi M, Rani T, Balakrishnan T, et al. Antimicrobial activity of silver nanoparticles prepared under an ultrasonic field. Int J Pharm Sci Nanotech. 2011;4:1491–1496.
  • Ansari MA, Khan HM, Khan AA, et al. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Basic Microbiol. 2014;54:905–915. 10.1002/jobm.v54.9
  • Matsumura Y, Yoshikata K, Kunisaki S-I, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003; 69(7): 4278–4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
  • Durán N, Marcato PD, Conti R, et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21:949–959. 10.1590/S0103-50532010000600002
  • Xiu ZM, Zhang QB, Puppala HL, et al. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–4275. 10.1021/nl301934w
  • Lok C-N, Ho C-M, Chen R, et al. Silver nanoparticles: partial oxidation and antibacterial activities. JBIC J Biol Inorg Chem. 2007;12:527–534. 10.1007/s00775-007-0208-z
  • Zhang Y, Shareena Dasari TP, Deng H, et al. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci and Health, Part C. 2015;33:286–327. 10.1080/10590501.2015.1055161
  • Mukha I, Eremenko A, Korchak G, et al. Antibacterial action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica. J Water Res Protection. 2010; 2010:2:131–136. https://doi.org/10.4236/jwarp.2010.22015
  • Hernández-Sierra JF, Ruiz F, Cruz Pena DCC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotech Biol Med. 2008;4:237–240. 10.1016/j.nano.2008.04.005
  • Nagaraj B, Divya T, Malakar B, et al. Phytosynthesis of gold nanoparticles using Caesalpinia pulcherrima (peacock flower) flower extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct. 2012;7:899–905.
  • Das SK, Das AR, Guha AK. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir. 2009;25:8192–8199. 10.1021/la900585p
  • Mishra A, Tripathy SK, Yun S-I. Bio-synthesis of gold and silver nanoparticles from candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol. 2011;11:243–248. 10.1166/jnn.2011.3265
  • Annamalai A, Christina V, Sudha D, et al. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B. 2013;108:60–65. 10.1016/j.colsurfb.2013.02.012
  • Glišić BD, Djuran MI. Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014;43:5950–5969. 10.1039/c4dt00022f
  • Shareena Dasari TP, Zhang Y, Yu H. Antibacterial activity and cytotoxicity of gold (I) and (III) ions and gold nanoparticles. Biochem Pharmacol (Los Angel). 2015;4(6):199. https://doi.org/10.4172/2167-0501.1000199
  • Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 2016;352:544–545. 10.1126/science.aad9358
  • Van Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14:742–750. 10.1016/S1473-3099(14)70780-7
  • Nordmann P, Naas T, Poirel L. Global spread of carbaperenemase-producing enterobacteriaceae. Emerging infectious diseases 2011;17:1791–1798. https://doi.org/10.3201/eid1710.110655.
  • Sweeney IR, Miraftab M, Collyer G. Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings – II. Pilot scale development. Carbohydr Polym. 2014;102:920–927. 10.1016/j.carbpol.2013.10.053
  • Santos TC, Höring B, Reise K, et al. In Vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds. Tissue Eng Part A. 2013;19:860–869. 10.1089/ten.tea.2011.0651
  • Zhao R, Li X, Sun B, et al. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromolec. 2014;68:92–97. 10.1016/j.ijbiomac.2014.04.029
  • Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016: pdb.prot087379:343–346. https://doi.org/10.1101/pdb.prot087379.
  • Nagoba B, Gandhi R, Wadher B, et al. Microbiological, histopathological and clinical changes in chronic infected wounds after citric acid treatment. J Med Microbiol. 2008;57:681–682. 10.1099/jmm.0.47647-0
  • Nagoba B, Wadher B, Kulkarni P, et al. Acetic acid treatment of pseudomonal wound infections. Eur J Gen Med. 2008;5 (2):104–106.
  • Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72:771–775. Epub 2015/02/11. 10.1007/s12013-015-0529-4