2,989
Views
29
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Novel catalytic properties of quadruple perovskites

ORCID Icon
Pages 541-548 | Received 29 Apr 2017, Accepted 30 Jun 2017, Published online: 27 Jul 2017

References

  • Mitchell RH. Perovskites: modern and ancient. Thunder Bay: Almaz Press; 2002.
  • Tilley RJD. Perovskites: structure-property relationships. New York, NY: John Wiley & Sons; 2016.10.1002/9781118935651
  • Labhasetwar N, Saravanan G, Kumar Megarajan S, et al. Perovskite-type catalytic materials for environmental applications. Sci Technol Adv Mater. 2015;16:036002.10.1088/1468-6996/16/3/036002
  • Bednorz JG, Muller KA. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z Phys B. 1986;64:189–193.10.1007/BF01303701
  • Urushibara A, Moritomo Y, Arima T, et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys Rev B. 1995;51:14103–14109.10.1103/PhysRevB.51.14103
  • Kobayashi KI, Kimura T, Sawada H, et al. Room-temperature magnetoresistance in an oxide material with an ordered double-Perovskite structure. Nature. 1998;395:677–680.
  • Nakajima T, Kageyama H, Yoshizawa H, et al. Structures and electromagnetic properties of new metal-ordered manganites: RBaMn2O6 (R=Y and Rare-Earth Elements). J Phys Soc Jpn. 2002;71:2843–2846.10.1143/JPSJ.71.2843
  • Bochu B, Chenavas J, Joubert JC, et al. High pressure synthesis and crystal structure of a new series of Perovskite-like compounds CMn7O12 (C=Na, Ca, Cd, Sr, La, Nd). J Solid State Chem. 1974;11:88–93.10.1016/0022-4596(74)90102-9
  • Chenavas J, Joubert JC, Marezio M, et al. The synthesis and crystal structure of CaCu3Mn4O12: A new Ferromagnetic-Perovskite-like compound. J Solid State Chem. 1975;14:25–32.10.1016/0022-4596(75)90358-8
  • Leinenweber K, Linton J, Navrotsky A, et al. High-pressure Perovskites on the join CaTiO3-FeTiO3. Phys Chem Miner. 1995;22:251–258.
  • Shiro K, Yamada I, Ikeda N, et al. Pd2+-incorporated Perovskite CaPd3B4O12 (B=Ti, V). Inorg Chem. 2013;52:1604–1609.10.1021/ic3025155
  • Ovsyannikov SV, Zainulin YG, Kadyrova NI, et al. New Antiferromagnetic Perovskite CaCo3V4O12 prepared at high-pressure and high-temperature conditions. Inorg Chem. 2013;52:11703–11710.10.1021/ic400649 h
  • Long YW, Hayashi N, Saito T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 Perovskite. Nature. 2009;458:60–63.10.1038/nature07816
  • Long Y, Saito T, Mizumaki M, et al. Various valence states of square-coordinated Mn in A-site-ordered Perovskites. J Am Chem Soc. 2009;131:16244–16247.10.1021/ja906668c
  • Kadyrova NI, Zakharova GS, Zainulin YG, et al. Synthesis and properties of the new compounds NaCu3V4O12 and CaCu3V4O12 obtained under uniform compression. Doklady Chemistry. 2003;392:251–253.10.1023/A:1026126110138
  • Subramanian MA, Marshall WJ, Calvarese TG, et al. Valence degeneracy in CaCu3Cr4O12. J Phys Chem Solids. 2003;64:1569–1571.10.1016/S0022-3697(03)00095-7
  • Yamada I, Takata K, Hayashi N, et al. Perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet. Angew Chem Int Ed. 2008;47:7032–7035.10.1002/anie.v47:37
  • Yamada I, Ishiwata S, Terasaki I, et al. Synthesis, structure, and physical properties of A-site ordered Perovskites ACu3Co4O12 (A=Ca and Y). Chem Mater. 2010;22:5328–5332.10.1021/cm101671j
  • Shiraki H, Saito T, Yamada T, et al. Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with A-site ordered Perovskite structure. Phys Rev B. 2007;76:140403.
  • Labeau M, Bochu B, Joubert JC, et al. Synthèse et caractérisation cristallographique et physique d'une série de composés ACu3Ru4O12 de type perovskite [Synthesis and crystallographic and physical characterization of a series of perovskite type ACu3Ru4O12 compounds]. J Solid State Chem. 1980;33:257–261.10.1016/0022-4596(80)90127-9
  • Yamada I, Ochi M, Mizumaki M, et al. High-pressure synthesis, crystal structure, and unusual valence state of Novel Perovskite oxide CaCu3Rh4O12. Inorg Chem. 2014;53:7089–7091.10.1021/ic501341x
  • Cheng JG, Zhou JS, Yang YF, et al. Possible Kondo physics near a metal-insulator crossover in the A-Site ordered Perovskite CaCu3Ir4O12. Phys Rev Lett. 2013;111:176403.10.1103/PhysRevLett.111.176403
  • Tohyama T, Saito T, Mizumaki M, et al. Antiferromagnetic interaction between A'-Site Mn Spins in A-site-ordered Perovskite YMn3Al4O12. Inorg Chem. 2010;49:2492–2495.10.1021/ic9024876
  • A Collomb, D Samaras, B Bochu, et al. Magnetic structures of some [AC3](B4)O12 compounds with a Perovskite-like structure. Physica B+C 1977;86–88, Part 2:927-928.
  • Takata K, Yamada I, Azuma M, et al. Magnetoresistance and electronic structure of the half-metallic ferrimagnet BiCu3Mn4O12. Phys Rev B. 2007;76:024429.
  • Akizuki Y, Yamada I, Fujita K, et al. AgCu3V4O12: A Novel Perovskite containing mixed-valence silver ions. Inorg Chem. 2013;52:13824–13826.10.1021/ic402579v
  • Akizuki Y, Yamada I, Fujita K, et al. A-site-ordered Perovskite MnCu3V4O12 with a 12-coordinated manganese(II). Inorg Chem. 2013;52:11538–11543.10.1021/ic401855j
  • Akizuki Y, Yamada I, Fujita K, et al. Rattling in the quadruple Perovskite CuCu3V4O12. Angew Chem Int Ed. 2015;54:10870–10874.10.1002/anie.201504784
  • Ovsyannikov SV, Abakumov AM, Tsirlin AA, et al. Perovskite-like Mn2O3: a path to new manganites. Angew Chem Int Ed. 2013;52:1494–1498.10.1002/anie.201208553
  • Sakai Y, Yang J, Yu R, et al. A-Site and B-Site charge orderings in an s-d level controlled Perovskite oxide PbCoO3. J Am Chem Soc. 2017;139:4574–4581.10.1021/jacs.7b01851
  • Chen WT, Mizumaki M, Seki H, et al. A half-metallic A- and B-site-ordered quadruple Perovskite oxide CaCu3Fe2Re2O12 with large magnetization and a high transition temperature. Nat Commun. 2014;5:3909.
  • Senn MS, Chen W-T, Saito T, et al. B-Cation order control of magnetism in the 1322 Perovskite CaCu3Fe2Nb2O12. Chem Mater. 2014;26:4832–4837.10.1021/cm502064b
  • Byeon S-H, Lee S-S, Parise JB, et al. New Ferrimagnetic oxide CaCu3Cr2Sb2O12: high-pressure synthesis, structure, and magnetic properties. Chem Mater. 2005;17:3552–3557.10.1021/cm050397b
  • Byeon S-H, Lufaso MW, Parise JB, et al. T high-pressure synthesis and characterization of Perovskites with simultaneous ordering of both the A- and B-Site cations, CaCu3Ga2M2O12 (M=Sb, Ta). Chem Mater. 2003;15:3798–3804.10.1021/cm034318c
  • Yin Y-Y, Liu M, Dai J-H, et al. LaMn3Ni2Mn2O12: An A- and B-Site ordered Quadruple Perovskite with A-Site tuning orthogonal spin ordering. Chem Mater. 2016;28:8988–8996.10.1021/acs.chemmater.6b03785
  • Larregola SA, Zhou J, Alonso JA, et al. New routes to synthesizing an ordered Perovskite CaCu3Fe2Sb2O12 and its magnetic structure by neutron powder diffraction. Inorg Chem. 2014;53:4281–4283.10.1021/ic500458 m
  • Deng H, Liu M, Dai J, et al. Strong enhancement of spin ordering by A-site magnetic ions in the ferrimagnet CaCu3Fe2Os2O12. Phys Rev B. 2016;94:024414.10.1103/PhysRevB.94.024414
  • Subramanian MA, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem. 2000;151:323–325.10.1006/jssc.2000.8703
  • Ramirez AP, Subramanian MA, Gardel M, et al. Giant dielectric constant response in a copper-titanate. Solid State Commun. 2000;115:217–220.10.1016/S0038-1098(00)00182-4
  • Zeng Z, Greenblatt M, Subramanian MA, et al. Large low-field magnetoresistance in perovskite-type CaCu3Mn4O12 without double exchange. Phys Rev Lett. 1999;82:3164–3167.10.1103/PhysRevLett.82.3164
  • Alonso JA, Sanchez-Benitez J, De Andres A, et al. Enhanced magnetoresistance in the complex perovskite LaCu3Mn4O12. Appl Phys Lett. 2003;83:2623–2625.10.1063/1.1611647
  • Kobayashi W, Terasaki I, Takeya J-I, et al. Novel heavy-fermion state in CaCu3Ru4O12. J Phys Soc Jpn. 2004;73:2373–2376.10.1143/JPSJ.73.2373
  • Xin Y, Zhou HD, Cheng JG, et al. Study of atomic structure and electronic structure of an AA'3B4O12 double-perovskite CaCu3Ir4O12 using STEM imaging and EELS techniques. Ultramicroscopy. 2013;127:94–99.10.1016/j.ultramic.2012.07.019
  • Prodi A, Gilioli E, Gauzzi A, et al. Charge, orbital and spin ordering phenomena in the mixed valence manganite (NaMn3+3)(Mn3+2Mn4+2)O12. Nature Mater. 2004;3:48–52.10.1038/nmat1038
  • Vasil’ev AN, Volkova OS. New functional materials AC3B4O12. Low Temp Phys. 2007;33:895.10.1063/1.2747047
  • Yamada I, Murakami M, Hayashi N, et al. Inverse charge transfer in the Quadruple Perovskite CaCu3Fe4O12. Inorg Chem. 2016;55:1715–1719.10.1021/acs.inorgchem.5b02623
  • Yamada I, Etani H, Tsuchida K, et al. Control of bond-strain-induced electronic phase transitions in iron perovskites. Inorg Chem. 2013;52:13751–13761.10.1021/ic402344 m
  • Etani H, Yamada I, Ohgushi K, et al. Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12. J Am Chem Soc. 2013;135:6100–6106.10.1021/ja312015j
  • Yamada I. High-pressure synthesis, electronic states, and structure-property relationships of Perovskite oxides, ACu3Fe4O12 (A: divalent alkaline earth or trivalent rare-earth ion). J Ceram Soc Jpn. 2014;122:846–851.10.2109/jcersj2.122.846
  • Yamada I, Tsuchida K, Ohgushi K, et al. Giant negative thermal expansion in the iron perovskite SrCu3Fe4O12. Angew Chem Int Ed. 2011;50:6579–6582.10.1002/anie.v50.29
  • Yamada I, Shiro K, Oka K, et al. Direct observation of negative thermal expansion in SrCu3Fe4O12. J Ceram Soc Jpn. 2013;121:912–914.10.2109/jcersj2.121.912
  • Yamada I, Shiro K, Etani H, et al. Valence transitions in negative thermal expansion material SrCu3Fe4O12. Inorg Chem. 2014;53:10563–10569.10.1021/ic501665c
  • Yamada I, Marukawa S, Murakami M, et al. “True” negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides. Appl Phys Lett. 2014;105:231906.10.1063/1.4903890
  • Yamada I, Marukawa S, Hayashi N, et al. Room-temperature zero thermal expansion in a cubic Perovskite oxide SrCu3Fe4−xMnxO12. Appl Phys Lett. 2015;106:151901.10.1063/1.4918293
  • Yagi S, Yamada I, Tsukasaki H, et al. Covalency-reinforced oxygen evolution reaction catalyst. Nat Commun. 2015;6:8249.10.1038/ncomms9249
  • Wang ZL, Xu D, Xu JJ, et al. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev. 2014;43:7746–7786.10.1039/C3CS60248F
  • Hong WT, Risch M, Stoerzinger KA, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci. 2015;8:1404–1427.10.1039/C4EE03869 J
  • Fabbri E, Habereder A, Waltar K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol. 2014;4:3800–3821.10.1039/C4CY00669 K
  • Suntivich J, May KJ, Gasteiger HA, et al. Perovskite Oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science. 2011;334:1383–1385.10.1126/science.1212858
  • Grimaud A, May KJ, Carlton CE, et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun. 2013;4:2439.
  • Suntivich J, Hong WT, Lee Y-L, et al. Estimating hybridization of transition metal and oxygen states in Perovskites from OK-edge X-ray absorption spectroscopy. J Phys Chem C. 2014;118:1856–1863.10.1021/jp410644j
  • Bocquet AE, Fujimori A, Mizokawa T, et al. Electronic-structure of SrFe4+O3 and related Fe Perovskite oxides. Phys Rev B. 1992;45:1561–1570.10.1103/PhysRevB.45.1561
  • May KJ, Carlton CE, Stoerzinger KA, et al. Influence of oxygen evolution during water oxidation on the surface of Perovskite Oxide catalysts. J Phys Chem Lett. 2012;3:3264–3270.10.1021/jz301414z
  • Zhu Y, Zhou W, Chen ZG, et al. SrNb0.1Co0.7Fe0.2O3-δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew Chem Int Ed. 2015;54:3897–3901.10.1002/anie.201408998
  • Yamada I, Fujii H, Takamatsu A, et al. Bifunctional oxygen reaction catalysis of quadruple manganese Perovskites. Adv Mater. 2017;29:1603004.10.1002/adma.v29.4
  • Robinson DM, Go YB, Mui M, et al. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc. 2013;135:3494–3501.10.1021/ja310286 h