2,926
Views
20
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

, , , , &
Pages 563-573 | Received 12 Jun 2017, Accepted 25 Jul 2017, Published online: 22 Aug 2017

References

  • DoE US. Energy efficiency & renewable energy department. Buildings energy databook. 2011.
  • Baetens R, Jelle BP, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol Energ Mat Sol C. 2010;94(2):87–105.10.1016/j.solmat.2009.08.021
  • Fridley DG. Estimating total energy consumption and emissions of China’s commercial and office buildings. California: Lawrence Berkeley National Laboratory. 2008.10.2172/928309
  • Park JH, Coy JM, Kasirga TS, et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature. 2013;500(7463):431–434.10.1038/nature12425
  • Wang M, Bian J, Sun H, et al. Sunlight-induced resistance changes and their effects on the semiconductor–metal transition behavior of VO2 film. J Mater Sci. 2016;51(17):8233–8239.10.1007/s10853-016-0098-y
  • Bian J, Wang M, Miao L, et al. Growth and characterization of VO2/p-GaN/sapphire heterostructure with phase transition properties. Appl Surf Sci. 2015;357:282–286.10.1016/j.apsusc.2015.08.263
  • Rajeswaran B, Umarji AM. Effect of W addition on the electrical switching of VO2 thin films. Aip Adv. 2016;6(3):035215.10.1063/1.4944855
  • Fan LL, Chen S, Liao GM, et al. Comprehensive studies of interfacial strain and oxygen vacancy on metal–insulator transition of VO2 film. J Phys-Condens Mat. 2016;28(25):255002.10.1088/0953-8984/28/25/255002
  • Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl Mater Inter. 2011;3(2):135–138.10.1021/am1011172
  • Ye H, Meng X, Xu B. Theoretical discussions of perfect window, ideal near infrared solar spectrum regulating window and current thermochromic window. Energ Buildings. 2012;49:164–172.10.1016/j.enbuild.2012.02.011
  • Mlyuka NR, Niklasson GA, Granqvist CG. Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solidi A. 2009;206(9):2155–2160.10.1002/pssa.v206:9
  • Wang M, Tian J, Zhang H, et al. Novel synthesis of pure VO2@ SiO2 core@ shell nanoparticles to improve the optical and anti-oxidant properties of a VO2 film. Rsc Adv. 2016;6(110):108286–108289.10.1039/C6RA20636 K
  • Lindström R, Maurice V, Zanna S, et al. Thin films of vanadium oxide grown on vanadium metal: oxidation conditions to produce V2O5 films for Li-intercalation applications and characterisation by XPS, AFM. RBS/NRA Surf Interfa Anal. 2006;38(1):6–18.10.1002/(ISSN)1096-9918
  • Fu G, Polity A, Volbers N, et al. Annealing effects on VO2 thin films deposited by reactive sputtering. Thin Solid Films. 2006;515(4):2519–2522.10.1016/j.tsf.2006.04.025
  • Peng Z, Wang Y, Du Y, et al. Phase transition and IR properties of tungsten-doped vanadium dioxide nanopowders. J Alloy Compd. 2009;480(2):537–540.10.1016/j.jallcom.2009.01.092
  • Huang Z, Chen C, Lv C, et al. Tungsten-doped vanadium dioxide thin films on borosilicate glass for smart window application. J Alloy Compd. 2013;564:158–161.10.1016/j.jallcom.2013.02.108
  • Phoempoon P, Sikong L. Synthesis of Thermochromic Mo-Doped VO2 Particles. Mater Sci Forum. 2016;867:88–92.10.4028/www.scientific.net/MSF.867
  • Zhang H, Wu Z, Niu R, et al. Metal–insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range. Appl Surf Sci. 2015;331:92–97.10.1016/j.apsusc.2015.01.013
  • Kiri P, Warwick MEA, Ridley I, et al. Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films. 2011;520(4):1363–1366.10.1016/j.tsf.2011.01.401
  • Wan J, Ren Q, Wu N, et al. Density functional theory study of M-doped (M= B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils. J Alloy Compd. 2016;662:621–627.10.1016/j.jallcom.2015.12.100
  • Quesada-Cabrera R, Powell MJ, Marchand P, et al. Scalable production of thermochromic Nb-Doped VO2 nanomaterials using continuous hydrothermal flow synthesis. J Nanosci Nanotechno. 2016;16(9):10104–10111.10.1166/jnn.2016.12842
  • Wang N, Shun NTC, Duchamp M, et al. Effect of lanthanum doping on modulating the thermochromic properties of VO2 thin films. RSC Adv. 2016;6(54):48455–48461.10.1039/C6RA09514C
  • Lv W, Huang D, Chen Y, et al. Synthesis and characterization of Mo-W co-doped VO2 (R) nano-powders by the microwave-assisted hydrothermal method. Ceram Int. 2014;40(8):12661–12668.10.1016/j.ceramint.2014.04.113
  • Abdellaoui I, Merad G, Maaza M, et al. Electronic and optical properties of Mg-, F-doped and Mg\F-codoped M1-VO2 via hybrid density functional calculations. J Alloy Compd. 2016;658:569–575.10.1016/j.jallcom.2015.10.248
  • Burkhardt W, Christmann T, Meyer BK, et al. W-and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films. 1999;345(2):229–235.10.1016/S0040-6090(98)01406-0
  • Liang Z, Zhao L, Meng W, et al. Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions. J Alloy Compd. 2017;694:124–131.10.1016/j.jallcom.2016.09.315
  • Zhang D, Yang K, Li Y, et al. Employing TiO2 buffer layer to improve VO2 film phase transition performance and infrared solar energy modulation ability. J Alloy Compd. 2016;684:719–725.10.1016/j.jallcom.2016.05.233
  • Fan LL, Chen S, Luo ZL, et al. Strain dynamics of ultrathin VO2 film grown on TiO2 (001) and the associated phase transition modulation. Nano letters. 2014;14(7):4036–4043.10.1021/nl501480f
  • Xiao H, Li Y, Yuan W, et al. Microstructures and thermochromic characteristics of VO2/AZO composite films. Infrared Phys Techn. 2016;76:580–586.10.1016/j.infrared.2016.04.022
  • Gao YF, Wang SB, Luo HJ, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energ Environ Sci. 2012;5(3):6104–6110.10.1039/c2ee02803d
  • Li Y, Ji S, Gao Y, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep-uk. 2013;3:1370.10.1038/srep01370
  • Xu G, Jin P, Tazawa M, et al. Optimization of antireflection coating for VO2-based energy efficient window. Sol Energ Mat Sol C. 2004;83(1):29–37.10.1016/j.solmat.2004.02.014
  • Yu JH, Nam SH, Lee JW, et al. Enhanced visible transmittance of thermochromic VO2 thin films by SiO2 passivation layer and their optical characterization. Mater. 2016;9(7):556.10.3390/ma9070556
  • Liu C, Wang N, Long Y. Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation. Appl Surf Sci. 2013;283:222–226.10.1016/j.apsusc.2013.06.085
  • Powell MJ, Quesada-Cabrera R, Taylor A, et al. Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chem Mater. 2016;28(5):1369–1376.10.1021/acs.chemmater.5b04419
  • Liu M, Su B, Kaneti YV, et al. Dual-phase transformation: spontaneous self-template surface-patterning strategy for ultra-transparent VO2 solar modulating coatings. ACS Nano. 2016;11(1):407–415.
  • Qian X, Wang N, Li Y, et al. Bioinspired multifunctional vanadium dioxide: improved thermochromism and hydrophobicity. Langmuir. 2014;30(35):10766–10771.10.1021/la502787q
  • Lu Q, Liu C, Wang N, et al. Periodic micro-patterned VO2 thermochromic films by mesh printing. J Mater Chem C. 2016;4(36):8385–8391.10.1039/C6TC02694 J
  • Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling. 2006;22(5):339–360.10.1080/08927010600980223
  • Zhu H, Guo Z, Liu W. Adhesion behaviors on superhydrophobic surfaces[J]. Chem Commun. 2014;50(30):3900–3913.10.1039/c3cc47818a
  • Quéré D. Non-sticking drops. Rep Prog Phys. 2005;68(11):2495.10.1088/0034-4885/68/11/R01
  • Wang B, Zhang Y, Shi L, et al. Advances in the theory of superhydrophobic surfaces. J Mater Chem A. 2012;22(38):20112–20127.10.1039/c2jm32780e
  • Manoudis PN, Tsakalof A, Karapanagiotis I, et al. Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Tech. 2009;203(10):1322–1328.10.1016/j.surfcoat.2008.10.041
  • Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol. 2011;6(9):534–534.10.1038/nnano.2011.145
  • Pan M, Zhong H, Wang S, et al. Properties of VO2 thin film prepared with precursor VO(acac)2. J Cryst Growth. 2004;265(1):121–126.10.1016/j.jcrysgro.2003.12.065
  • Xu G, Jin P, Tazawa M, et al. Tailoring of luminous transmittance upon switching for thermochromic VO2 films by thickness control. Jpn J Appl Phys. 2004;43(1R):186.10.1143/JJAP.43.186
  • Li SY, Niklasson GA, Granqvist CG. Thermochromic fenestration with VO2-based materials: three challenges and how they can be met. Thin Solid Films. 2012;520(10):3823–3828.10.1016/j.tsf.2011.10.053
  • Chen S, Luo CS, Dai L, et al. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. Phys Chem Chem Phys. 2013;15(40):17537–17543.10.1039/c3cp52009a
  • Chen S, Ma H, Dai J, et al. Nanostructured vanadium dioxide thin films with low phase transition temperature. Appl Phys Lett. 2007;90(10):101117.10.1063/1.2712427
  • Zhang S, Chou JY, Lauhon LJ. Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. Nano Let. 2009;9(12):4527–4532.10.1021/nl9028973
  • Trarieux H. Effect of substitution on the vanadium dioxide phase transition. Influence changements phase prop. Phys Corps Solids. 1970;101:I14.
  • Tang C, Georgopoulos P, Fine ME, et al. Local atomic and electronic arrangements in WxV1−xO2. Phys Rev B. 1985;31(2):1000.10.1103/PhysRevB.31.1000
  • Bowman RM, Gregg JM. VO2 thin films: growth and the effect of applied strain on their resistance. J Mater Sci-Mater El. 1998;9(3):187–191.10.1023/A:1008822023407
  • Kim GS, Hyun SH. Synthesis and characterization of silica aerogel films for inter-metal dielectrics via ambient drying. Thin Solid Films. 2004;460(1):190–200.10.1016/j.tsf.2003.12.151
  • Budunoglu H, Yildirim A, Guler MO, et al. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films. ACS Appl Mater Inter. 2011;3(2):539–545.10.1021/am101116b
  • Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on−CF3 alignment. Langmuir. 1999;15(13):4321–4323.10.1021/la981727s
  • Miwa M, Nakajima A, Fujishima A, et al. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir. 2000;16(13):5754–5760.10.1021/la991660o
  • Yabu H, Shimomura M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem Mater. 2005;17(21):5231–5234.10.1021/cm051281i
  • Wang R, Hashimoto K, Fujishima A, et al. Watanabe, photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater. 1998;10(2):135–138.10.1002/(ISSN)1521-4095
  • Feng X, Zhai J, Jiang L. The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Edit. 2005;44(32):5115–5118.10.1002/(ISSN)1521-3773