1,484
Views
6
CrossRef citations to date
0
Altmetric
Focus on Overview of innovative materials for energy

Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates

, , , , , & show all
Pages 644-653 | Received 07 May 2017, Accepted 31 Jul 2017, Published online: 04 Sep 2017

References

  • Nakayama S, Kageyama T, Aono H, et al. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem. 1995;5:1801–1805.10.1039/jm9950501801
  • Nakayama S, Sakamoto M. Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE=La, Pr, Nd, Sm, Gd, Dy). J Eur Ceram Soc. 1998;18:1413–1418.10.1016/S0955-2219(98)00032-6
  • Fukuda K, Asaka T, Okino M, et al. Anisotropy of oxide-ion conduction in apatite-type lanthanum silicate. Solid State Ionics. 2012;217:40–45.10.1016/j.ssi.2012.04.018
  • Yoshioka H. Oxide ionic conductivity of apatite-type lanthanum silicates. J Alloys Compd. 2006;408:649–652.10.1016/j.jallcom.2004.12.180
  • Yoshioka H. Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J Am Ceram Soc. 2007;90:3099–3105.10.1111/jace.2007.90.issue-10
  • Fukuda K, Asaka T, Oyabu M, et al. Crystal structure and oxide-ion conductivity along c-axis of apatite-type lanthanum silicate with excess oxide ions. Chem Mater. 2012;24:4623–4631.10.1021/cm3034643
  • Kuz’min EA, Belov NV. Crystal structure of simplest silicates of La and Sm. Doklady Akademii Nauk SSSR. 1965; 165 (1); 88–90.
  • Okudera H, Masubuchi Y, Kikkawa S, et al. Structure of oxide ion-conducting lanthanum oxyapatite, La9.33(SiO4)6O2. Solid State Ionics. 2005;176:1473–1478.10.1016/j.ssi.2005.02.014
  • Tolchard JR, Islam MS, Slater PR. Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26. J Mater Chem. 2003;13:1956–1961.10.1039/b302748c
  • Islam MS, Tolchard JR, Slater PR. An apatite for fast oxide ion conduction. Chem Commun. 2003;13:1486–1487.
  • Jones A, Slater PR, Islam MS. Local defect structures and ion transport mechanisms in the oxygen-excess apatite La9.67(SiO4)6O2.5. Chem Mater. 2008;20:5055–5060.10.1021/cm801101j
  • Béchade E, Masson O, Iwata T, et al. Diffusion path and conduction mechanism of oxide ions in apatite-type lanthanum silicates. Chem Mater. 2009;21:2508–2517.10.1021/cm900783j
  • Liao T, Sazaki T, Suehara S, et al. Position preference and diffusion path of an oxygen ion in apatite-type lanthanum silicate La9.33Si6O26: a density functional study. J Mater Chem. 2011;21:3234–3242.10.1039/c0jm02473b
  • Matsunaga K, Toyoura K. First-principles analysis of oxide-ion conduction mechanism in lanthanum silicate. J Mater Chem. 2012;22:7265–7273.10.1039/c2jm16283 k
  • Imaizumi K, Toyoura K, Nakamura A, et al. Strong correlation in 1D oxygen-ion conduction of apatite-type lanthanum silicate. J Phys Condens Matter. 2015;27:365601.
  • Sansom J, Richings D, Slater PR. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics. 2001;139:205–210.10.1016/S0167-2738(00)00835-3
  • Yoshioka H, Nojiri Y, Tanase S. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics. 2008;179:2165–2169.10.1016/j.ssi.2008.07.022
  • Leon-Reina L, Losilla ER, Martinez-Lara M, et al. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. J Mater Chem. 2004;14:1142–1149.10.1039/B315257 J
  • Leon-Reina L, Losilla ER, Martinez-Lara M, et al. Interstitial oxygen in oxygen-stoichiometric apatites. J Mater Chem. 2005;15:2489–2498.10.1039/b503374 h
  • León-Reina L, Porras-Vázquez JM, Losilla ER, et al. Interstitial oxide positions in oxygen-excess oxy-apatites. Solid State Ionics. 2006;177:1307–1315.10.1016/j.ssi.2006.05.034
  • Sansom JEH, Tolchard JR, Islam MS, et al. Solid state 29Si NMR studies of apatite-type oxide ion conductors. J Mater Chem. 2006;16:1410–1413.10.1039/b600122j
  • Leon-Reina L, Porras-Vasquez JM, Losilla ER, et al. Low temperature crystal structures of apatite oxygen-conductors containing interstitial oxygen. Dalton Transactions. 2007;414:2058–2064.10.1039/B616211H
  • Tolchard JR, Slater PR. A high temperature powder neutron diffraction structural study of the apatite-type oxide ion conductor, La9.67Si6O26.5. J Phys Chem Solids. 2008;69:2433–2439.10.1016/j.jpcs.2008.04.033
  • Ali R, Yashima M, Matsushita Y, et al.  Diffusion path of oxide ions in an apatite-type ionic conductor La9.69(Si5.70Mg0.30)O26.24. Chem Mater. 2008;20:5203–5208.10.1021/cm7035234
  • Matsushita Y, Izumi F, Kobayashi K, et al. Powder neutron diffraction of La-apatite under low temperature. Nucl Instr Meth Phys Res. 2009;600:319–321.10.1016/j.nima.2008.11.081
  • Guillot S, Beaudet-Savignat S, Lambert S, et al. Evidence of local defects in the oxygen excess apatite La9.67(SiO4)6O2.5 from high resolution neutron powder diffraction. J Solid State Chem. 2009; 182; 3358–3364.10.1016/j.jssc.2009.09.031
  • Fukuda K, Asaka T, Hamaguchi R, et al. Oxide-ion conductivity of highly c-axis-oriented apatite-type lanthanum silicate polycrystal formed by reactive diffusion between La2SiO5 and La2Si2O7. Chem Mater. 2011;23:5474–5483.10.1021/cm2029905
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2(2):65–71.10.1107/S0021889869006558
  • Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192(1-2):55–69.10.1016/0921-4526(93)90108-I
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci. 1996;6(1):15–50.10.1016/0927-0256(96)00008-0
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.10.1103/PhysRevB.54.11169
  • Blochl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.10.1103/PhysRevB.50.17953
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.10.1103/PhysRevB.59.1758
  • Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1992;46(11):6671.10.1103/PhysRevB.46.6671
  • Perdew JP, Chevary JA, Vosko SH, et al. Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B. 1993;48(7):4978.10.1103/PhysRevB.48.4978.2
  • Pulay P. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem Phys Lett. 1980;73(2):393–398.10.1016/0009-2614(80)80396-4
  • Proffen T, Billinge SJL. PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Cryst. 1999;32(3):572–575.10.1107/S0021889899003532
  • Masson O, Thomas P. Exact and explicit expression of the atomic pair distribution function as obtained from X-ray total scattering experiments. J Appl Cryst. 2013;46(2):461–465.10.1107/S0021889812051357