4,306
Views
57
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Intermetallic compounds in 3D integrated circuits technology: a brief review

ORCID Icon, ORCID Icon, &
Pages 693-703 | Received 28 Nov 2016, Accepted 04 Aug 2017, Published online: 28 Sep 2017

Bibliography

  • Matsumoto T, Satoh M, Sakuma K, et al. New three-dimensional wafer bonding technology using the adhesive injection method. Jpn J Appl Phys. 1998;37:1217–1221.10.1143/JJAP.37.1217
  • Ramm P, Bollmann D, Braun R, et al. Three dimensional metallization for vertically integrated circuits: Invited lecture. Microelectron Eng. 1997;37-38:39–47.10.1016/S0167-9317(97)00092-0
  • Vinet M, Batude P, Fenouillet-Beranger C, et al. Monolithic 3D integration: a powerful alternative to classical 2D scaling. IEEE. 2014:1–3.
  • Fukushima T, Bea J, Kino H, et al. Reconfigured-wafer-to-wafer 3-D integration using parallel self-assembly of chips with Cu–SnAg microbumps and a nonconductive film. IEEE Trans Electron Devices. 2014;61:533–539.10.1109/TED.2013.2294831
  • Wu X. 3D-IC technologies and 3D FPGA. IEEE. 2015:KN1. 1–KN1. 4.
  • Podpod A, Demeurisse C, Gerets C, et al. Challenges and solutions on pre-assembly processes for thinned 3D wafers with micro-bumps on the backside. IEEE. 2014:75–79.
  • Hsu H, Lin T-Y, Ouyang F-Y. Evaluation of electromigration behaviors of Pb-free microbumps in three-dimensional integrated circuit packaging. J Electron Mater. 2014;43:236–246.10.1007/s11664-013-2840-4
  • Motoyoshi M, Koyanagi M. 3D-LSI technology for image sensor. 3D-LSI technology for image sensor. J Instrum. 2009;4:P03009.
  • Lee C-C, Tzeng T-L, Huang P-C. Development of equivalent material properties of microbump for simulating chip stacking packaging. Materials. 2015;8:5121–5137.10.3390/ma8085121
  • Bum LJ, Li JAJ, Woo DRM. Process development of multi-die stacking using 20 um pitch micro bumps on large scale dies. IEEE. 2014:318–321.
  • Talebanpour B, Huang Z, Chen Z, et al. Effect of joint scale and processing on the fracture of Sn-3Ag-0.5 Cu solder joints: application to micro-bumps in 3D packages. J Electron Mater. 2016;45:57–68.10.1007/s11664-015-4066-0
  • Spiesshoefer S, Schaper L. IC stacking technology using fine pitch, nanoscale through silicon vias. IEEE. 2003;631–633.
  • Shen W-W, Chen K-N. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res Lett. 2017;12:56.10.1186/s11671-017-1831-4
  • Erdmann C, Lowney D, Lynam A, et al. A heterogeneous 3D-IC consisting of two 28 nm FPGA die and 32 reconfigurable high-performance data converters. IEEE J Solid-State Circuits. 2015;50:258–269.10.1109/JSSC.2014.2357432
  • Yoon J-W, Bang J-H, Lee C-W, et al. Interfacial reaction and intermetallic compound formation of Sn–1Ag/ENIG and Sn–1Ag/ENEPIG solder joints. J Alloys Compd. 2015;627:276–280.10.1016/j.jallcom.2014.11.208
  • Yang M, Ko Y-H, Bang J-H, et al. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate. Mater Charact. 2017;124:250–259.
  • El-Daly A, Al-Ganainy G, Fawzy A, et al. Structural characterization and creep resistance of nano-silicon carbide reinforced Sn–1.0 Ag–0.5 Cu lead-free solder alloy. Mater Eng ( Reigate, U. K.). 2014;55:837–845.
  • El-Daly A, El-Taher A, Dalloul T. Improved creep resistance and thermal behavior of Ni-doped Sn–3.0 Ag–0.5 Cu lead-free solder. J Alloys Compd. 2014;587:32–39.10.1016/j.jallcom.2013.10.148
  • Liu C-M, Lin H-W, Chu Y-C, et al. Low-temperature direct copper-to-copper bonding enabled by creep on highly (111)-oriented Cu surfaces. Scr Mater. 2014;78-79:65–68.10.1016/j.scriptamat.2014.01.040
  • Arfaei B. Lead-free solders: focus on fundamentals, reliability, and applications. JOM. 2014;66:2309–2310.10.1007/s11837-014-1163-0
  • Yang C, Song F, Lee SR. Impact of Ni concentration on the intermetallic compound formation and brittle fracture strength of Sn–Cu–Ni (SCN) lead-free solder joints. Microelectron Reliab. 2014;54:435–446.10.1016/j.microrel.2013.10.005
  • An T, Qin F. Effects of the intermetallic compound microstructure on the tensile behavior of Sn3. 0Ag0. 5Cu/Cu solder joint under various strain rates. Microelectron Reliab. 2014;54:932–938.10.1016/j.microrel.2014.01.008
  • Hu X, Li Y, Liu Y, et al. Microstructure and shear strength of Sn37Pb/Cu solder joints subjected to isothermal aging. Microelectron Reliab. 2014;54:1575–1582.10.1016/j.microrel.2014.04.003
  • Wang J, Nishikawa H. Impact strength of Sn–3.0 Ag–0.5 Cu solder bumps during isothermal aging. Microelectron Reliab. 2014;54:1583–1591.10.1016/j.microrel.2014.03.007
  • Lee C-C, Hsieh C-P, Guo Y-H, et al. Reliability enhancement of ultra-thin chip assembly module in 3D-ICs integrations by the assistance of molding compounds. IEEE. 2014:321–324.
  • Pletea I, Wurman ZE, Or-Bach Z, et al. Monolithic 3D layout using 2D EDA for embedded memory-rich designs. IEEE. 2015:1–2.
  • Koyanagi M. Recent progress in 3D integration technology. Recent progress in 3D integration technology. 2015;12:20152001–20152001.
  • Hung C-Y, Lee W-Y. A proactive technology selection model for new technology: The case of 3D IC TSV. Technol Forecase Soc. 2016;103:191–202.10.1016/j.techfore.2015.11.009
  • Kandlikar SG. Review and projections of integrated cooling systems for three-dimensional integrated circuits. J Electron Packag. 2014;136:024001.10.1115/1.4027175
  • Pizzagalli A, Buisson T, Beica R. 3D technology applications market trends & key challenges. IEEE. 2014:78–81.
  • Nonaka T, Kobayashi Y, Asahi N, et al. High throughput thermal compression NCF bonding. IEEE. 2014:913–918.
  • Liu Y, Li M, Kim DW, et al. Filler trap and solder extrusion in 3D IC thermo-compression bonded microbumps. IEEE. 2014:609–612.
  • Choudhury SF, Ladani L. Effect of intermetallic compounds on the thermomechanical fatigue life of three-dimensional integrated circuit package microsolder bumps: finite element analysis and study. J Electron Packag. 2015;137:1–10.
  • Wu B, Kumar A. Extreme ultraviolet lithography and three dimensional integrated circuit—a review. Appl Phys Rev. 2014;1:011104.10.1063/1.4863412
  • Lin S-K, Chang H-M, Cho C-L, et al. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electron Mater Lett. 2015;11:687–694.10.1007/s13391-015-5015-z
  • Park M, Baek S, Kim S, et al. Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics. Appl Surf Sci. 2015;324:168–173.10.1016/j.apsusc.2014.10.098
  • Wang J, Wang Q, Liu Z, et al. Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu-Sn bonding in 3D interconnection. Appl Surf Sci. 2016;384:200–206.10.1016/j.apsusc.2016.05.023
  • Lau JH, Lee C-K, Zhan C-J, et al. Through-silicon hole interposers for 3-D IC integration. IEEE Trans Compon Packag Manuf Technol. 2014;4:1407–1419.10.1109/TCPMT.2014.2339832
  • Chen J-C, Chen E-H, Tzeng P-J, et al. Low-cost 3DI C process technologies for wide-I/O memory cube. IEEE:1–2.
  • Hu YH, Liu C, Chen M, et al. Process development to enable 3D IC multi-tier die bond for 20 μM pitch and beyond. IEEE. 2014:572–575.
  • Kirihata T, Golz J, Wordeman M, et al. Three-dimensional dynamic random access memories using through-silicon-vias. Three-dimensional dynamic random access memories using through-silicon-vias. 2016;6:373–384.
  • Lee DU, Kim KW, Kim KW, et al. A 1.2 V 8 Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM with effective I/O test circuits. IEEE J Solid-State Circuits. 2015;50:191–203.10.1109/JSSC.2014.2360379
  • Sukharev V. Beyond black’s equation: full-chip EM/SM assessment in 3D IC stack. Microelectron Eng. 2014;120:99–105.10.1016/j.mee.2013.08.013
  • Lau JH. Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration. J Electron Packag. 2014;136:040801.10.1115/1.4028629
  • Ryu S-K, Lu K-H, Im J, et al. Stress-induced delamination of through silicon via structures. AIP Conf Proc. 2015;1378:153–167.
  • Stiebing M, Vogel D, Steller W, et al. Challenges in the reliability of 3D integration using TSVs. IEEE. 2015:1–8.
  • Roh M-H, Sharma A, Lee J-H, et al. Extrusion suppression of TSV filling metal by Cu-W electroplating for three-dimensional microelectronic packaging. Metall Mater Trans A. 2015;46:2051–2062.10.1007/s11661-015-2801-z
  • Chen K-N, Tu K-N. Materials challenges in three-dimensional integrated circuits. MRS Bull. 2015;40:219–222.10.1557/mrs.2015.8
  • Batra P, Skordas S, LaTulipe D, et al. Three-dimensional wafer stacking using Cu TSV integrated with 45 nm high performance SOI-CMOS embedded DRAM technology. Three-dimensional wafer stacking using Cu TSV integrated with 45 nm high performance SOI-CMOS embedded DRAM technology. J Low Power Electron Appl. 2014;4:77–89.
  • Ito Y, Murugesan M, Kino H, et al. Development of highly-reliable microbump bonding technology using self-assembly of NCF-covered KGDs and multi-layer 3D stacking challenges. IEEE. 2015:336–341.
  • Lin K-L. 3D microelectronic packaging. Switzerland: Springer International Publishing; 2017; p. 205–222.10.1007/978-3-319-44586-1
  • Huang Y-W, Fan C-W, Lin Y-M, et al. Development of high throughput adhesive bonding scheme by wafer-level underfill for 3D die-to-interposer stacking with 30 μm-pitch micro interconnections. IEEE. 2015:490–495.
  • Shen Y-A, Chen C. Study of grain size and orientation of 30 μm solder microbumps bonded by thermal compression. IEEE. 2015:204–206.
  • Derakhshandeh J, De Preter I, Gerets C, et al. 3D stacking using bump-less process for sub 10um pitch interconnects. IEEE. 2016:128–133.
  • Liu Y, Chu Y-C, Tu K. Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter. Acta Mater. 2016;117:146–152.10.1016/j.actamat.2016.07.004
  • Wang B, Zhu J, Chen S, et al. Research on the microstructure and shearing property of microbumps with one Sn grain for high density solder interconnects. IEEE. 2015:659–661.
  • Chen C, Yu D, Chen K-N. Vertical interconnects of microbumps in 3D integration. MRS Bull. 2015;40:257–263.
  • Bertheau J, Bleuet P, Hodaj F, et al. Reflow processes in micro-bumps studied by synchrotron X-ray projection nanotomography. Microelectron Eng. 2014;113:123–129.10.1016/j.mee.2013.07.013
  • Derakhshandeh J, De Preter I, England L, et al. Reflow process optimization for micro-bumps applications in 3D technology. IEEE. 2014:1–5.
  • Ohyama M, Nimura M, Mizuno J, et al. Evaluation of hybrid bonding technology of single-micron pitch with planar structure for 3D interconnection. Microelectron Reliab. 2016;59:134–139.
  • Gu S. Material innovation opportunities for 3D integrated circuits from a wireless application point of view. MRS Bull. 2015;40:233–241.10.1557/mrs.2015.9
  • Ohyama M, Nimura M, Mizuno J, et al. Evaluation of hybrid bonding technology of single-micron pitch with planar structure for 3D interconnection. Evaluation of hybrid bonding technology of single-micron pitch with planar structure for 3D interconnection. 2016;59:134–139.
  • Liu Y, Tamura N, Kim DW, et al. A metastable phase of tin in 3D integrated circuit solder microbumps. Scr Mater. 2015;102:39–42.10.1016/j.scriptamat.2015.02.009
  • Chen W-Y, Tu W, Chang H-C, et al. Growth orientation of Cu–Sn IMC in Cu/Sn–3.5 Ag/Cu–xZn microbumps and Zn-doped solder joints. Mater Lett. 2014;134:184–186.10.1016/j.matlet.2014.07.061
  • Hsu H, Huang Y, Huang S, et al. Evolution of the intermetallic compounds in Ni/Sn-2.5 Ag/Ni microbumps for three-dimensional integrated circuits. J Electron Mater. 2015;44:3888–3895.10.1007/s11664-015-3925-z
  • Wang Y, De Rosa IM, Tu K. Size effect on ductile-to-brittle transition in Cu-solder-Cu micro-joints. IEEE. 2015:632–639.
  • Zeng G, McDonald SD, Gu Q, et al. Kinetics of the β → α transformation of tin: role of α-tin nucleation. Cryst Growth Des. 2015;15:5767–5773.10.1021/acs.cgd.5b01069
  • Ho C-E, Lee P-T, Chen C-N, et al. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints. J Alloys Compd. 2016;676:361–368.10.1016/j.jallcom.2016.03.134
  • Chen J-S, Ye C-H, Yu C, et al. The micro-mechanism for the effect of Sn grain orientation on substrate consumption in Sn solder joints. Comput Mater Sci. 2015;108:1–7.10.1016/j.commatsci.2015.05.029
  • Zhang Z, Cao H, Li M, et al. Three-dimensional placement rules of Cu6Sn5 textures formed on the (111)(Cu) and (001)(Cu) surfaces using electron backscattered diffraction. Mater Eng ( Reigate, U. K.). 2016;94:280–285.
  • Yu J, Yang C, Lin Y, et al. Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J Alloys Compd. 2015;629:16–21.10.1016/j.jallcom.2015.01.001
  • Chen W-Y, Duh J-G. Suppression of Cu 3 Sn layer and formation of multi-orientation IMCs during thermal aging in Cu/Sn–3.5 Ag/Cu–15Zn transient liquid-phase bonding in novel 3D-IC Technologies. Mater Lett. 2017;186:279–282.
  • Yuan Y, Guan Y, Li D, et al. Investigation of diffusion behavior in Cu–Sn solid state diffusion couples. J Alloys Compd. 2016;661:282–293.10.1016/j.jallcom.2015.11.214
  • Mu D, McDonald S, Read J, et al. Critical properties of Cu 6 Sn 5 in electronic devices: recent progress and a review. Curr Opin Solid State Mater Sci. 2015;20:55–76.
  • Chu K, Sohn Y, Moon C. A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding. Scr Mater. 2015;109:113–117.10.1016/j.scriptamat.2015.07.032
  • Minho O, Vakanas G, Moelans N, et al. Formation of compounds and Kirkendall vacancy in the Cu–Sn system. Microelectron Eng. 2014;120:133–137.
  • Bertheau J, Hodaj F, Hotellier N, et al. Effect of intermetallic compound thickness on shear strength of 25 μm diameter Cu-pillars. Intermetallics. 2014;51:37–47.10.1016/j.intermet.2014.02.012
  • Yang L, Zhang Z. Growth behavior of intermetallic compounds in Cu/Sn3.0Ag0.5Cu solder joints with different rates of cooling. J Electron Mater. 2015;44:590–596.10.1007/s11664-014-3530-6
  • Salleh MM, McDonald S, Yasuda H, et al. Rapid Cu 6 Sn 5 growth at liquid Sn/solid Cu interfaces. Scr Mater. 2015;100:17–20.10.1016/j.scriptamat.2014.11.039
  • Zhou M-B, Jin H, Ke C-B, et al. Quasi in-situ study of morphological evolution of the interfacial IMC in single-sided interface Sn-0.3 Ag-0.7 Cu/Cu joints during multiple reflow process. IEEE. 2015:333–337.
  • Guo B, Kunwar A, Ma H, et al. Effects of soldering temperature and cooling rate on the as-soldered microstructures of intermetallic compounds in Sn-0.7 Cu/Cu joint. IEEE. 2015:249–252.
  • Akamatsu S, Plapp M. Eutectic and peritectic solidification patterns. Curr Opin Solid State Mater Sci. 2015;20:46–54.
  • Ko Y-H, Lee J-D, Yoon T, et al. Controlling interfacial reactions and intermetallic compound growth at the interface of a lead-free solder joint with the layer-by-layer transferred graphene. ACS Appl Mater Interfaces. 2016;8:5679–5686.
  • Gu Y, Shen P, Yang N-N, et al. Effects of direct current on the wetting behavior and interfacial morphology between molten Sn and Cu substrate. J Alloys Compd. 2014;586:80–86.10.1016/j.jallcom.2013.10.021
  • Liang C-L, Lin K-L, Peng J-W. Microstructural evolution of intermetallic compounds in TCNCP Cu pillar solder joints. J Electron Mater. 2016;45:51–56.10.1007/s11664-015-4065-1
  • Zhao Z, Yang S, Hu A, et al. Influence of solder layer thickness on the interfacial reaction in Ni/Sn/Cu system. IEEE. 2015:447–449.
  • Saud N, Somidin F, Ibrahim NS, et al. Formation of Kirkendall voids at low and high aging temperature in the Sn-0.7 Cu-1.0 wt.% Si3N4/Cu solder joints. Trans Tech Publ. 2015;1107:577–581.
  • Wendt M, Plöβl A, Weimar A, et al. Investigation of the influence of annealing temperature on the morphology and growth kinetic of Ni3Sn4 in the Ni-Sn-solder system. J Mater Sci Chem Eng. 2016;4:116–130.
  • Hu X, Xu T, Jiang X, et al. Interfacial reaction and IMCs growth behavior of Sn3Ag0. 5Cu/Ni solder bump during aging at various temperatures. J Mater Sci: Mater Electron. 2016;27:4245–4252.
  • Talebanpour B, Dutta I. Fracture mechanisms in Sn-Ag-Cu solder micro-bumps for 3D microelectronic packages. Am Soc Mechanical Engineers. 2015:V002T02A003–V002T02A003.
  • Kim M-Y, Chen L-S, Chae S-H, et al. Mechanism of void formation in Cu post solder joint under electromigration. IEEE. 2015:135–141.
  • Hsiao H-Y, Lin J-K. Electromigration reliability and morphologies of Cu pillar with microbump under high current density stressing. IEEE. 2015:1–4.
  • Park J-M, Kim S-H, Jeong M-H, et al. Effect of Cu–Sn intermetallic compound reactions on the Kirkendall void growth characteristics in Cu/Sn/Cu microbumps. Jpn J Appl Phys. 2014;53:05HA06.10.7567/JJAP.53.05HA06
  • Aasmundtveit KE, Luu T-T, Wang K, et al. Void formation in Cu-Sn solid-liquid interdiffusion (SLID) bonding. IEEE. 2015:1–6.
  • Lin J-A, Lin C-K, Liu C-M, et al. Formation mechanism of porous Cu3Sn intermetallic compounds by high current stressing at high temperatures in low-bump-height solder joints. Crystals. 2016;6:1–10.10.3390/cryst6010012
  • Wang S, Hsu L, Wang N, et al. EBSD investigation of Cu-Sn IMC microstructural evolution in Cu/Sn-Ag/Cu microbumps during isothermal annealing. J Electron Mater. 2014;43:219–228.10.1007/s11664-013-2675-z
  • Gain AK, Zhang L. Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder. J Mater Sci: Mater Electron. 2016;27:781–794.
  • Cheng Y-C, Wang Y-T, Hsu F-C, et al. Effect of loading stress on the growth of Cn/Sn intermetallic compounds at high temperatures. J Electron Mater. 2015;44:604–611.10.1007/s11664-014-3503-9
  • Yao Y, Zhou J, Feng X, et al. Interfacial structure and growth kinetics of intermetallic compounds between Sn-3.5 Ag solder and Al substrate during solder process. J Alloys Compd. 2016;682:627–633.
  • Choudhury SF, Ladani L. Local shear stress-strain response of Sn-3.5 Ag/Cu solder joint with high fraction of intermetallic compounds: experimental analysis. J Alloys Compd. 2016;680:665–676.
  • Hu X, Li Y, Min Z. Interfacial reaction and IMC growth between Bi-containing Sn0. 7Cu solders and Cu substrate during soldering and aging. J Alloys Compd. 2014;582:341–347.10.1016/j.jallcom.2013.08.018
  • Yang D, Yang G, Cai J, et al. Kinetics of interfacial reaction between Sn-3.0 Ag-0.5 Cu solder and Co-4.0 P or Co-8.0 P metallization. IEEE. 2015:439–446.
  • Yu C, Chen J, Cheng Z, et al. Fine grained Cu film promoting Kirkendall voiding at Cu 3 Sn/Cu interface. J Alloys Compd. 2016;660:80–84.10.1016/j.jallcom.2015.11.073
  • Yao P, Li X, Liang X, et al. Investigation of soldering process and interfacial microstructure evolution for the formation of full Cu 3 Sn joints in electronic packaging. Mater Sci Semicond Process. 2017;58:39–50.10.1016/j.mssp.2016.11.019
  • Ko Y-H, Kim M-S, Bang J, et al. Properties and reliability of solder microbump joints between Si chips and a fexible substrate. J Electron Mater. 2015;44:2458–2466.10.1007/s11664-015-3781-x
  • Panchenko I, Croes K, De Wolf I, et al. Degradation of Cu 6 Sn 5 intermetallic compound by pore formation in solid–liquid interdiffusion Cu/Sn microbump interconnects. Microelectron Eng. 2014;117:26–34.10.1016/j.mee.2013.12.003
  • Liu X, He S, Nishikawa H. Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach. J Alloys Compd. 2017;695:2165–2172.10.1016/j.jallcom.2016.11.064
  • Hsiao H-Y, Trigg AD, Chai TC. Failure mechanism for fine pitch microbump in Cu/Sn/Cu System during current stressing. IEEE Trans Compon Packag Manuf Technol. 2015;5:314–319.10.1109/TCPMT.2015.2398416
  • An R, Tian Y, Zhang R, et al. Electromigration-induced intermetallic growth and voids formation in symmetrical Cu/Sn/Cu and Cu/Intermetallic compounds (IMCs)/Cu joints. J Mater Sci: Mater Electron. 2015;26:2674–2681.
  • Kim S-H, Park G-T, Park J-J, et al. Effects of annealing, thermomigration, and electromigration on the intermetallic compounds growth kinetics of Cu/Sn-2.5 Ag microbump. J Nanosci Nanotechnol. 2015;15:8593–8600.10.1166/jnn.2015.11502
  • Tian S, Wang F, Li D, et al. Effect of electromigration of Sn-xAg-Cu solder joints on its microstructure and mechanical properties. IEEE. 2015:256–259.
  • Huang M, Zhao J, Zhang Z, et al. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0 Ag-0.5 Cu interconnect. J Alloys Compd. 2016;678:370–374.
  • Su Y-P, Wu C-S, Ouyang F-Y. Asymmetrical precipitation of Ag3Sn intermetallic compounds induced by thermomigration of Ag in Pb-free microbumps during solid-state aging. J Electron Mater. 2016;45:30–37.10.1007/s11664-015-3983-2
  • Huang M, Yang F, Zhao N. Thermomigration-induced asymmetrical precipitation of Ag 3 Sn plates in micro-scale Cu/Sn–3.5 Ag/Cu interconnects. Mater Eng ( Reigate, U. K.). 2016;89:116–120.
  • Zhao N, Zhong Y, Huang M, et al. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci Rep. 2015;5:13491.
  • Wei G, Du L, Jia Y, et al. Effect of thermomigration on evolution of interfacial intermetallic compounds in Cu/Sn/Cu and Cu/Sn0. 7Cu/Cu solder joints. J Mater Sci: Mater Electron. 2015;26:4313–4317.
  • Ouyang F-Y, Hsu W-N, Yang Y-S. Effect of Sn orientation on Cu diffusion for Pb-free solders under a temperature gradient. IEEE. 2015;486–490.