8,582
Views
61
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Development and applications of transparent conductive nanocellulose paper

& ORCID Icon
Pages 620-633 | Received 30 May 2017, Accepted 04 Aug 2017, Published online: 30 Aug 2017

References

  • Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–3994.10.1039/c0cs00108b
  • Zhu H, Fang Z, Preston C, et al. Transparent paper: fabrications, properties, and device applications. Energy Environ Sci. 2014;7:269–287.10.1039/C3EE43024C
  • Hoeng F, Denneulin A, Bras J. Use of nanocellulose in printed electronics: a review. Nanoscale. 2016;8:13131–13154.10.1039/C6NR03054H
  • Fang Z, Zhu H, Preston C, et al. Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C. 2013;1:6191–6197.10.1039/c3tc31331j
  • Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem. 2011;50:5438–5466.10.1002/anie.201001273
  • Peng B, Ren X, Wang Z, et al. High performance organic transistor active-matrix driver developed on paper substrate. Sci Rep. 2014;4:6430.
  • Barr MC, Rowehl JA, Lunt RR, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater. 2011;23:3500–3505.10.1002/adma.201101263
  • Kim DH, Kim YS, Wu J, et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv Mater. 2009;21:3703–3707.10.1002/adma.v21:36
  • Bollström R, Määttänen A, Tobjörk D, et al. A multilayer coated fiber-based substrate suitable for printed functionality. Org Electron. 2009;10:1020–1023.10.1016/j.orgel.2009.04.014
  • Li S, Huang D, Zhang B, et al. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater. 2014;4:1301655.10.1002/aenm.201301655
  • Ihalainen P, Määttänen A, Järnström J, et al. Influence of surface properties of coated papers on printed electronics. Ind Eng Chem Res. 2012;51:6025–6036.10.1021/ie202807v
  • Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–3500.10.1021/cr900339w
  • Saito T, Nishiyama Y, Putaux J-L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687–1691.10.1021/bm060154s
  • Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–2491.10.1021/bm0703970
  • Iwamoto S, Nakagaito AN, Yano H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A. 2005;81:1109–1112.10.1007/s00339-005-3316-z
  • Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.
  • Saito T, Isogai A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conductions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules. 2004;5:1983–1989.10.1021/bm0497769
  • Ifuku S, Nogi M, Abe K, et al. surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules. 2007;8:1873–1978.
  • Shi Z, Zhang Y, Phillips GO, et al. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–545.10.1016/j.foodhyd.2013.07.012
  • Shi Z, Phillips GO, Yang G. Nanocellulose electroconductive composites. Nanoscale. 2013;5:3194–3201.
  • Li S, Huang D, Yang J, et al. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy. 2014;9:309–317.10.1016/j.nanoen.2014.08.004
  • Wu C-N, Cheng K-C. Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose. 2016;24:269–283.
  • Yano H, Sugiyama J, Nakagaito AN, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17:153–155.10.1002/(ISSN)1521-4095
  • Zhu H, Jia Z, Chen Y, et al. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013;13:3093–3100.10.1021/nl400998t
  • Ränby B, Ribi E. Ultrastructure of cellulose. Experientia. 1950;6:12–14.10.1007/BF02154044
  • Nickerson RF, Habrle JA. Cellulose intercrystalline structure. Ind Eng Chem. 1947;39:1507–1512.10.1021/ie50455a024
  • Yu H, Qin Z, Liang B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A. 2013;1:3938–3944.10.1039/c3ta01150j
  • Camarero Espinosa S, Kuhnt T, Foster EJ, et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules. 2013;14:1223–1230.10.1021/bm400219u
  • Sadeghifar H, Filpponen I, Clarke SP, et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci. 2011;46:7344–7355.10.1007/s10853-011-5696-0
  • Bras J, Viet D, Bruzzese C, et al. Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohyd Polym. 2011;84:211–215.10.1016/j.carbpol.2010.11.022
  • Zhou Y, Fuentes-Hernandez C, Khan TM, et al. Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep. 2013;3:327.10.1038/srep01536
  • Yang H, Tejado A, Alam N, et al. Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir. 2012;28:7834–7842.10.1021/la2049663
  • Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose. Google Patents; 1984;483:743.
  • Turbak A, Snyder F, Sandberg K. Microfibrillated cellulose—a new composition of commercial significance. Atlanta, GA, USA; 1984. p. 115–124.
  • Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres. Polym Int. 1998;47:291–294.10.1002/(ISSN)1097-0126
  • Zhu W, Zhu J, Gleisner R, et al. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol. 2010;101:2782–2792.10.1016/j.biortech.2009.10.076
  • Lv D, Xu M, Liu X, et al. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Proc Technol. 2010;91:903–909.10.1016/j.fuproc.2009.09.014
  • Takacs E, Wojnarovits L, Földváry C, et al. Effect of combined gamma-irradiation and alkali treatment on cotton–cellulose. Radiat Phys Chem. 2000;57:399–403.10.1016/S0969-806X(99)00409-0
  • Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose I β crystalline domains. Carbohyd Polym. 2005;61:191–197.10.1016/j.carbpol.2005.04.018
  • Henriksson M, Henriksson G, Berglund L, et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J. 2007;43:3434–3441.10.1016/j.eurpolymj.2007.05.038
  • Kang W, Yan C, Foo CY, et al. Foldable electrochromics enabled by nanopaper transfer method. Adv Funct Mater. 2015;25:4203–4210.10.1002/adfm.v25.27
  • Kang W, Lin MF, Chen J, et al. Highly transparent conducting nanopaper for solid state foldable electrochromic devices. Small. 2016;12:6370–6377.10.1002/smll.201600979
  • Fukuzumi H, Saito T, Iwata T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules. 2008;10:162–165.
  • Fang Z, Zhu H, Preston C, et al. Development, application and commercialization of transparent paper. Trans Mater Res. 2014;1:015004.10.1088/2053-1613/1/1/015004
  • Sehaqui H, Liu A, Zhou Q, et al. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules. 2010;11:2195–2198.10.1021/bm100490s
  • Varanasi S, Batchelor WJ. Rapid preparation of cellulose nanofibre sheet. Cellulose. 2013;20:211–215.10.1007/s10570-012-9794-1
  • Xu X, Zhou J, Jiang L, et al. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale. 2016;8:12294–12306.10.1039/C6NR02245F
  • Chen J, Akin M, Yang L, et al. Transparent electrode and magnetic permalloy made from novel nanopaer. ACS Appl Mater Interfaces. 2016;8:27081–27090.10.1021/acsami.6b08616
  • Nogi M, Abe K, Handa K, et al. Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett. 2006;89:233123.10.1063/1.2403901
  • Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater. 2008;20:1849–1852.10.1002/(ISSN)1521-4095
  • Jung YH, Chang T-H, Zhang H, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun. 2015;6:7170.10.1038/ncomms8170
  • Celano U, Nagashima K, Koga H, et al. All-cellulose nanovolatile resistive memory. NPG Asia Mater. 2016;8:e310.10.1038/am.2016.144
  • Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science. 2004;305:1273–1276.10.1126/science.1101243
  • Zhang D, Ryu K, Liu X, et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006;6:1880–1886.10.1021/nl0608543
  • Hu L, Kim HS, Lee J-Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4:2955–2963.10.1021/nn1005232
  • Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater. 2012;24:5117–5122.10.1002/adma.201201886
  • Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574–578.10.1038/nnano.2010.132
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.10.1038/nphoton.2010.186
  • LingáFoo W, SeeáLee P. Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale. 2014;6:4572–4576.
  • Cai G, Darmawan P, Cui M, et al. Highly stable transparent conductive silver grid/pedot:pss electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv Energy Mater. 2016;6:1501882.10.1002/aenm.201501882
  • Ji S, Hyun BG, Kim K, et al. Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater. 2016;8:e299.10.1038/am.2016.113
  • Zhu H, Fang Z, Wang Z, et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano. 2016;10:1369–1377.10.1021/acsnano.5b06781
  • Hu L, Zheng G, Yao J, et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci. 2013;6:513–518.10.1039/C2EE23635D
  • Nogi M, Karakawa M, Komoda N, et al. Transparent conductive nanofiber paper for foldable solar cells. Sci Rep. 2015;5:689.10.1038/srep17254
  • Fang Z, Zhu H, Yuan Y, et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014;14:765–773.10.1021/nl404101p
  • Ha D, Fang Z, Hu L, et al. Paper-based anti-reflection coatings for photovoltaics. Adv Energy Mater. 2014;4:1301804.10.1002/aenm.201301804
  • Huang J, Zhu H, Chen Y, et al. Highly transparent and flexible nanopaper transistors. ACS Nano. 2013;7:2106–2113.10.1021/nn304407r
  • Fujisaki Y, Koga H, Nakajima Y, et al. Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater. 2014;24:1657–1663.10.1002/adfm.v24.12
  • Zhang Q, Bao W, Gong A, et al. A highly sensitive, highly transparent, gel-gated MoS2 phototransistor on biodegradable nanopaper. Nanoscale. 2016;8:14237–14242.10.1039/C6NR01534D
  • Gaspar D, Fernandes SN, de Oliveira AG, et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology. 2014;25:094008.10.1088/0957-4484/25/9/094008
  • Zhu H, Xiao Z, Liu D, et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ Sci. 2013;6:2105–2111.10.1039/c3ee40492 g
  • Purandare S, Gomez EF, Steckl AJ. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films. Nanotechnology. 2014;25:094012.10.1088/0957-4484/25/9/094012
  • Wu W, Tassi NG, Zhu H, et al. Nanocellulose-based translucent diffuser for optoelectronic device applications with dramatic improvement of light coupling. ACS Appl Mater Interfaces. 2015;7:26860–26864.10.1021/acsami.5b09249
  • Yang P-K, Lin Z-H, Pradel KC, et al. Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano. 2015;9:901–907.10.1021/nn506631t
  • Zhong J, Zhu H, Zhong Q, et al. Self-powered human-interactive transparent nanopaper systems. ACS Nano. 2015;9:7399–7406.10.1021/acsnano.5b02414
  • Gao X, Huang L, Wang B, et al. Natural materials assembled, biodegradable, and transparent paper-based electret nanogenerator. ACS Appl Mater Interfaces. 2016;8:35587–35592.10.1021/acsami.6b12913
  • Nogi M, Komoda N, Otsuka K, et al. Foldable nanopaper antennas for origami electronics. Nanoscale. 2013;5:4395–4399.10.1039/c3nr00231d
  • Inui T, Koga H, Nogi M, et al. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater. 2015;27:1112–1116.10.1002/adma.201404555
  • Zhu H, Narakathu BB, Fang Z, et al. A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale. 2014;6:9110–9115.10.1039/C4NR02036G
  • Nagashima K, Koga H, Celano U, et al. Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep. 2014;4:5532.