4,403
Views
27
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Effect of slurry composition on the chemical mechanical polishing of thin diamond films

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 654-663 | Received 07 Feb 2017, Accepted 09 Aug 2017, Published online: 15 Sep 2017

References

  • Williams OA. Nanocrystalline diamond. Diamond Relat Mater. 2011;20:621–640. DOI:10.1016/j.diamond.2011.02.015
  • Williams O, Kriele A, Hees J, et al. High young’s modulus in ultra thin nanocrystalline diamond. Chem Phys Lett. 2010;495(1–3):84–89. DOI:10.1016/j.cplett.2010.06.054
  • Williams OA, Douhéret O, Daenen M, et al. Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett. 2007;445(4–6):255–258. DOI:10.1016/j.cplett.2007.07.091
  • Jiang X, Schiffmann K, Klages C-P. Nucleation and initial growth phase of diamond thin films on (100) silicon. Phys Rev B. 1994;50:8402–8410. DOI:10.1103/PhysRevB.50.8402
  • Smereka P, Li X, Russo G, et al. Simulation of faceted film growth in three dimensions: microstructure, morphology and texture. Acta Mater. 2005;53(4):1191–1204. DOI:10.1016/j.actamat.2004.11.013
  • Ergincan O, Palasantzas G, Kooi BJ. Influence of surface modification on the quality factor of microresonators. Phys Rev B. 2012;85:205420. DOI:10.1103/PhysRevB.85.205420
  • Liu WL, Shamsa M, Calizo I, et al. Thermal conduction in nanocrystalline diamond films: effects of the grain boundary scattering and nitrogen doping. Appl Phys Lett. 2006;89(17):171915. DOI:10.1063/1.2364130
  • Bhusari D, Yang J, Wang T, et al. Highly transparent nano-crystalline diamond films grown by microwave CVD. Solid State Commun. 1998;107(6):301–305. DOI:10.1016/S0038-1098(98)00226-9
  • Iriarte G, Rodríguez J, Calle F. Synthesis of c-axis oriented aln thin films on different substrates: a review. Mater Res Bull. 2010;45(9):1039–1045. DOI:10.1016/j.materresbull.2010.05.035
  • Rodriguez-Madrid JG, Iriarte GF, Pedros J, et al. Super-high-frequency saw resonators on aln/diamond. IEEE Electron Device Lett. 2012;33(4):495–497. DOI:10.1109/LED.2012.2183851
  • Chen Y, Zhang L. Polishing of diamond materials. 1st ed. Portalnd: Springer Series; 2013.
  • Grillo SE, Field JE. The polishing of diamond. J Phys D Appl Phys. 1997;30(2):202. DOI:10.1088/0022-3727/30/2/007
  • El-Dasher BS, Gray JJ, Tringea JW, et al. Crystallographic anisotropy of wear on a polycrystalline diamond surface. Appl Phys Lett. 2006;88:241915-1–241915-3. DOI:10.1063/1.2213180
  • Bögli U, Blatter A, Pimenov S, et al. Tribological properties of smooth polycrystalline diamond films. Diamond Relat Mater. 1995;4(7):1009–1019. DOI:10.1016/0925-9635(95)00272-3
  • Fan QH, Grácio J, Pereira E. Residual stresses in chemical vapour deposited diamond films. Diamond Relat Mater. 2000;9(9–10):1739–1743. DOI:10.1016/S0925-9635(00)00284-3
  • Edwards MJ, Bowen CR, Allsopp DWE, et al. Modelling wafer bow in silicon-polycrystalline CVD diamond substrates for gan-based devices. J Phys D Appl Phys. 2010;43(38):385502. DOI:10.1088/0022-3727/43/38/385502
  • Thomas ELH, Nelson GW, Mandal S, et al. Chemical mechanical polishing of thin film diamond. Carbon. 2014;68:473–479. DOI:10.1016/j.carbon.2013.11.023
  • Zantye PB, Kumar A, Sikder A. Chemical mechanical planarization for microelectronics applications. Mater Sci Eng R Rep. 2004;45(3–6):89–220. DOI:10.1016/j.mser.2004.06.002
  • Thomas ELH, Mandal S, Brousseau EB, et al. Silica based polishing of (100) and (111) single crystal diamond. Sci Technol Adv Mater. 2014;15(3):035013. DOI:10.1088/1468-6996/15/3/035013
  • Oliver MR, Evans D, Stein D, et al. Chemical-mechanical, planarization of semiconductor materials. 1st ed. Portalnd: Springer Series; 2003.
  • Neslen CL, Mitchel WC, Hengehold RL. Effects of process parameter variations on the removal rate in chemical mechanical polishing of 4h-sic. J Electron Mater. 2001;30:1271–1275. DOI:10.1007/s11664-001-0111-2
  • Ahn Y, Yoon J, Baek C, et al. Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction. Wear. 2004;257:785–789. DOI:10.1016/j.wear.2004.03.020
  • Babu SV, Jindal A, Li Y. Chemical-mechanical planarization of cu and ta. JOM. 2001;53(6):50–52. DOI:10.1007/s11837-001-0104-x
  • Kern W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc.. 1990;137(6):1887–1892. DOI:10.1149/1.2086825
  • McGrath J, Davis C. Polishing pad surface characterisation in chemical mechanical planarisation. J Mater Process Technol. 2004;153–154:666–673. DOI:10.1016/j.jmatprotec.2004.04.094
  • Krishnan M, Nalaskowski JW, Cook LM. Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem Rev. 2010;110(1):178–204. DOI:10.1021/cr900170z
  • Hochenga H, Tsaia HY, Sub YT. Modeling and experimental analysis of the material removal rate in the chemical mechanical planarization of dielectric films and bare silicon waferss. Electrochem Soc. 2001;148(10):G581–G586. DOI:10.1149/1.1401087
  • Penta NK, Veera PRD, Babu SV. Role of poly(diallyldimethylammonium chloride) in selective polishing of polysilicon over silicon dioxide and silicon nitride films. Langmuir. 2011;27:3502–3510. DOI:10.1021/la104257k
  • Lide DR. ‘Section 9’ CRC handbook of chemistry and physics. 84th ed. Boca Raton (FL): CRC Press; 2003--2004.
  • Peguiron A, Moras G, Walter M, et al. Activation and mechanochemical breaking of c-c bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon. 2016;98:474–483. DOI:10.1016/j.carbon.2015.10.098
  • Nakamatsu H, Mukoyama T, Adachi H. Ionic and covalent bonds in ceo2 crystal. Chem Phys Lett. 1995;247(1):168–172. DOI:10.1016/0009-2614(95)01185-7
  • Choi W, Abiade J, Lee S-M, et al. Effects of slurry particles on silicon dioxide CMP. J Electrochem Soc. 2004;151:G512–G522. DOI:10.1149/1.1768133