3,262
Views
9
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

ORCID Icon
Pages 634-643 | Received 30 Apr 2017, Accepted 09 Aug 2017, Published online: 30 Aug 2017

References

  • Busseron E, Ruff Y, Moulin E, et al. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–7140.
  • Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–817.10.1126/science.1205962
  • Rybtchinski B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano. 2011;5:6791–6818.10.1021/nn2025397
  • Ariga K, Hill JP, Lee MV, et al. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater. 2008;9:014109.10.1088/1468-6996/9/1/014109
  • Zhanhu S, Gilles A, Kocsis I, et al. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chem Eur J. 2016;22:2158–2164.
  • Fang R, Zhang H, Yang L, et al. Supramolecular self-assembly induced adjustable multiple gating states of nanofluidic diodes. J Am Chem Soc. 2016;138:16372–16379.10.1021/jacs.6b09601
  • Barboiu M, Duc YL, Gilles A, et al. An artificial primitive mimic of the Gramicidin-A channel. Nat Commun. 2014;5:4142.
  • Ye H-Y, Zhang Y, Noro S-I, et al. Molecule-displacive ferroelectricity in organic supramolecular solids. Sci Rep. 2013;3:2249.10.1038/srep02249
  • Assouma CD, Crochet A, Chérémond Y, et al. Kinetics of ion transport through supramolecular channels in single crystals. Angew Chem Int Ed. 2013;52:4682–4685.10.1002/anie.201208195
  • Si W, Chen X, Hu X-B, et al. Selective artificial transmembrane channels for protons by formation of water wires. Angew Chem Int Ed. 2011;50:12564–12568.10.1002/anie.201106857
  • Horiuchi S, Tokura Y. Organic ferroelectrics. Nat Mater. 2008;7:357–366.10.1038/nmat2137
  • Schneider S, Licsandru E-D, Kocsis I, et al. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J Am Chem Soc. 2017;139:3721–3727.10.1021/jacs.6b12094
  • Cheng C-C, Lee D-J. Supramolecular assembly-mediated lithium ion transport in nanostructured solid electrolytes. RSC Adv. 2016;6:38223–38227.10.1039/C6RA07011F
  • Young W-S, Epps TH III. Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules. 2012;45:4689–4697.10.1021/ma300362f
  • Sato T, Morinaga S, Marukane S, et al. Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush. Adv Mater. 2011;23:4868–4872.10.1002/adma.201101983
  • Kato T, Yasuda T, Kamikawa Y, et al. Self-assembly of functional columnar liquid crystals. Chem Commun. 2009;7:729–739.10.1039/b816624b
  • Bruce PG, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930–2946.10.1002/(ISSN)1521-3773
  • Staunton E, Andreev YG, Bruce PG. Factors influencing the conductivity of crystaline polymer electrolytes. Faraday Discuss. 2007;13:143–156.10.1039/B601945E
  • Bruce PG. Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage. Dalton Trans. 2006;11:1365–1369.
  • Kato T, Mizoshita N, Kishinoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68.10.1002/(ISSN)1521-3773
  • Cho B-K, Jain A, Gruner SM, et al. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science. 2004;305:1598–1601.10.1126/science.1100872
  • Zhang C, Gamble S, Ainsworth D, et al. Alkali metal crystalline polymer electrolytes. Nat Mater. 2009;8:580–584.10.1038/nmat2474
  • Zhang C, Lilley SJ, Ainsworth D, et al. Structure and conductivity of small-molecule electrolytes [CH3O(CH2CH2O)nCH3]:LiAsF6 (n = 8-12). Chem Mater. 2008;20:4039–4044.10.1021/cm8005327
  • Zhang C, Andreev YG, Bruce PG. Crystalline small-molecule electrolytes. Angew Chem Int Ed. 2007;46:2848–2850.10.1002/(ISSN)1521-3773
  • Zhang C, Ainsworth D, Andreev YG, et al. Ionic conductivity in the solid glyme complexes [CH3O(CH2CH2O)nCH3]:LiAsF6 (n = 3,4). J Am Chem Soc. 2007;129:8700–8701.10.1021/ja073145f
  • Lilley SJ, Andreev YG, Bruce PG. Ionic conductivity in crystalline PEO6:Li(AsF6)1-x(SbF6)x. J Am Chem Soc. 2006;128:12036–12037.10.1021/ja063091u
  • Zhang C, Staunton E, Andreev YG, et al. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J Am Chem Soc. 2005;127:18305–18308.10.1021/ja056129w
  • Staunton E, Andreev YG, Bruce PG. Structure and conductivity of the crystalline polymer electrolyte β-PEO6:LiAsF6. J Am Chem Soc. 2005;127:12176–12177.10.1021/ja053249v
  • Stoeva Z, Martin-Litas I, Staunton E, et al. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J Am Chem Soc. 2003;125:4619–4626.10.1021/ja029326t
  • Gadjourova Z, Andreev YG, Tunstall DP, et al. Ionic conductivity in crystalline polymer electrolytes. Nature. 2001;412:520–523.10.1038/35087538
  • MacGlashan GS, Andreev YG, Bruce PG. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature. 1999;398:792–794.
  • Nakamura T, Akutagawa T, Honda K, et al. A molecular metal with ion-conducting channels. Nature. 1998;394:159–162.10.1038/28128
  • Dillon REA, Shriver DF. Ion transport in cryptand and crown ether lithium salt complexes. Chem Mater. 1999;11:3296–3301.10.1021/cm990376f
  • Moriya M, Kato D, Hayakawa Y, et al. Crystal structure and solid state ionic conductivity of molecular crystal composed of lithium bis(trifluoromethanesulfonyl)amide and 1,2-dimethoxybenzene in a 1:1 molar ratio. Solid State Ionics. 2016;285:29–32.10.1016/j.ssi.2015.05.012
  • Moriya M, Nomura K, Sakamoto W, et al. Precisely controlled supramolecular ionic conduction paths and their structure–conductivity relationships for lithium ion transport. Cryst EngComm. 2014;16:10512–10518.10.1039/C4CE01417 K
  • Moriya M, Kato D, Sakamoto W, et al. Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction. Chem Eur J. 2013;19:13554–13560.10.1002/chem.201300106
  • Moriya M, Kitaguchi H, Nishibori E, et al. Molecular ionics in supramolecular assemblies with channel structures containing lithium ions. Chem Eur J. 2012;18:15305–15309.10.1002/chem.v18.48
  • Nowinski JL, Lightfoot P, Bruce P. Structure of LiN(CF3SO2)2, a novel salt for electrochemistry. J Mater Chem. 1994;4:1579–1580.10.1039/jm9940401579
  • Xue L, Padgett CW, DesMarteau DD, et al. Synthesis and structures of alkali metal salts of bis[(trifluoromethyl)sulfonyl]imide. Solid State Sci. 2002;4:1535–1545.10.1016/S1293-2558(02)00050-X
  • Fujii K, Fujimori T, Takamuku T, et al. Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J Phys Chem B. 2006;110:8179–8183.10.1021/jp0612477
  • Lopes JNC, Pádua AAH. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J Phys Chem B. 2004;108:16893–16898.10.1021/jp0476545
  • Nishibori E, Takata M, Kato K, et al. The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl Instrum Methods Phys Res Sect A. 2001;467:1045–1048.10.1016/S0168-9002(01)00639-8
  • Henderson WA, McKenna F, Khan MA. Glyme−lithium bis(trifluoromethanesulfonyl)imide and glyme−lithium Bis(perfluoroethanesulfonyl)imide phase behavior and solvate structures. Chem Mater. 2005;17:2284–2289.10.1021/cm047881j
  • Davidson MG, Raithby PR, Johnson AL, et al. Structural diversity in lewis-base complexes of lithium triflimide. Eur J Inorg Chem. 2003;18:3445–3452.10.1002/(ISSN)1099-0682
  • Sanders RA, Frech R, Khan MA. Structural investigation of crystalline and solution phases in N, N, N′, N′-tetramethylethylenediamine (TMEDA) with lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3). J Phys Chem B. 2003;107:8310–8315.10.1021/jp022418 k
  • Sun C, Liu J, Gong Y, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363–386.10.1016/j.nanoen.2017.01.028