2,521
Views
11
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Computational insights into charge transfer across functionalized semiconductor surfaces

ORCID Icon, &
Pages 681-692 | Received 27 Jun 2017, Accepted 21 Aug 2017, Published online: 26 Sep 2017

References

  • Grӓtzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Phil Trans R Soc A. 2007;365:993–1005.
  • Tan, MX, Laibinis, PE, Nguyen, ST, et al. Progress in inorganic chemistry, volume 41. Principles and applications of semiconductor photoelectrochemistry. In KD Karlin, editors. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1994. pp. 21–144.
  • Grätzel M. Photoelectrochemical cells. Nature. 2001;414:338–344.10.1038/35104607
  • Walter MG, Warren EL, McKone JR, et al. Solar water splitting cells. Chem Rev. 2010;110:6446–6473.10.1021/cr1002326
  • Gray HB. Powering the planet with solar fuel. Nat Chem. 2009;1:7.10.1038/nchem.141
  • Turner JA. A nickel finish protects silicon photoanodes for water splitting. Science. 2013;342:811–812.10.1126/science.1246766
  • Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci. 2006;103:15729–15735.10.1073/pnas.0603395103
  • Ronge J, Bosserez T, Martel D, et al. Monolithic cells for solar fuels. Chem Soc Rev. 2014;43:7963–7981.10.1039/C3CS60424A
  • Turner JA. Sustainable hydrogen production. Science. 2004;305:972–974.10.1126/science.1103197
  • Brillet J, Cornuz M, Formal FL, et al. Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. J Mater Res. 2010;25:17–24.10.1557/JMR.2010.0009
  • Prevot MS, Sivula K. Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C. 2013;117:17879–17893.10.1021/jp405291 g
  • Nielander AC, Shaner MR, Papadantonakis KM, et al. A taxonomy for solar fuels generators. Energy Environ Sci. 2015;8:16–25.10.1039/C4EE02251C
  • Ager JW III, Shaner, M, Walczak, K, et al. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ Sci. 2015;8:2811–2824.10.1039/C5EE00457H
  • Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res. 1995;28:141–145.10.1021/ar00051a007
  • Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C. 2010;11:179–209.10.1016/j.jphotochemrev.2011.02.003
  • Guijarro N, Prévot MS, Sivula K. Surface modification of semiconductor photoelectrodes. Phys Chem Chem Phys. 2015;17:15655.10.1039/C5CP01992C
  • Smith WA, Sharp ID, Strandwitz NC, et al. Interfacial band-edge energetics for solar fuels production. Energy Environ Sci. 2015;8:2851–2862.10.1039/C5EE01822F
  • Wolkow RA. Controlled molecular adsorption on silicon: laying a foundation for molecular devices. Annu Rev Phys Chem. 1999;50:413–441.10.1146/annurev.physchem.50.1.413
  • Vilan A, Shanzer A, Cahen D. Molecular control over Au/GaAs diodes. Nature. 2000;404:166–168.10.1038/35004539
  • Haick H, Ghabboun J, Niitsoo O, et al. Effect of molecular binding to a semiconductor on metal/molecule/semiconductor junction behavior. J Phys Chem B. 2005;109(19):9622–9630.10.1021/jp0504470
  • Zuppiroli, L, Si-Ahmed, L, Kamaras, K, et al. Self-assembled monolayers as interfaces for organic opto-electronic devices. Eur Phys J B. 1999;11:505–512.
10.1007/s100510050962
  • Krüger J, Bach U, Grätzel M. Modification of TiO2 heterojunctions with benzoic acid derivatives in hybrid molecular solid-state devices. Adv Mater. 2000;12:447–451.10.1002/(ISSN)1521-4095
  • Ganzorig C, Kwak K-J, Yagi K, et al. Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices. Appl Phys Lett. 2001;79:272–274.10.1063/1.1384896
  • Roth KM, Yasseri AA, Liu Z, et al. Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. J Am Chem Soc. 2003;125:505–517.10.1021/ja021169a
  • Wu DG, Ashkensasy G, Shvarts D, et al. Novel NO biosensor based on the surface derivatization of GaAs by ‘Hinged’ iron porphyrins. Angew Chem Int Ed. 2000;39:4496–4500.10.1002/1521-3773(20001215)39:24<>1.0.CO;2-Q
  • Wu, DG, Cahen, D, Graf, P, et al. Direct detection of low-concentration NO in physiological solutions by a new GaAs-based sensor. J Chem Eur. 2001;7:1743–1749.10.1002/(ISSN)1521-3765
  • Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293:1289–1292.10.1126/science.1062711
  • Lu W, Salac D. Patterning multilayers of molecules via self-organization. Phys Rev Lett. 2005;94:476.10.1103/PhysRevLett.94.146103
  • Zhang S, Yan L, Altman M, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials. 1999;20:1213.10.1016/S0142-9612(99)00014-9
  • Ito Y. Surface micropatterning to regulate cell functions. Biomaterials. 1999;20:2333–2342.10.1016/S0142-9612(99)00162-3
  • Clark P, Britland S, Connolly P. Growth cone guidance and neuron morphology on micropatterned laminim surfaces. J Cell Sci. 1993;105:203–212.
  • James CD, Davis R, Meyer M, et al. Aligned microcontact printing of micrometer-scale poly-L-Lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng. 2000;47:17–21.10.1109/10.817614
  • Grimm RL, Bierman MJ, O’Leary LE, et al. Comparison of the photoelectrochemical behavior of H-terminated and methyl-terminated Si(111) surfaces in contact with a series of one-electron, outer-sphere redox couples in CH3CN. J Phys Chem C. 2012;116(44):23569–23576.10.1021/jp308461q
  • Bansal A, Li X, Lauermann I, et al. Alkylation of Si surfaces using a two-step halogenation/grignard route. J Am Chem Soc. 1996;118(30):7225–7226.10.1021/ja960348n
  • Grant NE, McIntosh KR. Passivation of a (100) silicon surface by silicon dioxide grown in nitric acid. IEEE Electron Device Lett. 2009;30:922–924.10.1109/LED.2009.2025898
  • Halls MD, Raghavachari K. Importance of steric effects in cluster models of silicon surface chemistry: ONIOM studies of atomic layer deposition (ALD) of Al2O3 on H-Si(111). J Phys Chem A. 2004;108:2982–2987.10.1021/jp037014 m
  • Kim HJ, Kearney K, Le L, et al. Platinum-enhanced electron transfer and surface passivation through ultrathin film aluminum oxide (Al2O3) on Si(111)-CH3 photoelectrodes. ACS Appl Mater & Interfaces. 2015;7(16):8572–8584.10.1021/acsami.5b00376
  • Scheuermann AG, Prange JD, Gunji M, et al. Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes. Energy Environ Sci. 2013;6:2487–2496.10.1039/c3ee41178 h
  • Kim, H, Kearney, K, Le, L, et al. Charge-transfer through ultrathin Film TiO2 on n-Si(111) photoelectrodes: experimental and theoretical investigation of electric field-enhanced transport with a nonaqueous redox couple. J Phys Chem C. 2016;120:25697–25708.
  • Seger B, Pedersen T, Laursen AB, et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J Am Chem Soc. 2013;135:1057–1064.10.1021/ja309523t
  • Seger B, Tilley SD, Pedersen T, et al. Silicon protected with atomic layer deposited TiO2: conducting versus tunneling through TiO2. Mater Chem A. 2013;1:15089–15094.10.1039/c3ta12309j
  • Lin Y, Kapadia R, Yang J, et al. Role of TiO2 surface passivation on improving the performance of p-InP photocathodes. J Phys Chem C. 2015;119(5):2308–2313.10.1021/jp5107313
  • Paracchino A, Laporte V, Sivula K, et al. Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater. 2011;10:456–461.10.1038/nmat3017
  • Yang X, Spurgeon J, Zheng Z, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ Sci. 2014;7:2504–2517.
  • Lewis NS. A quantiative investigation of the open-circuit photovoltage at the semiconductor/liquid interface. J Electrochem Soc. 1984;131(11):2496–2503.
  • Rosenbluth ML, Lewis NS. Kinetic studies of carrier transport and recombination at the n-silicon methanol interface. J Am Chem Soc. 1986;108(16):4689.10.1021/ja00276a001
  • Gleason-Rohrer DC, Brunschwig BS, Lewis NS. Measurement of the band-bending and surface dipole at chemically functionalized Si(111)\vacuum interfaces. J Phys Chem C. 2013;117:18031–18042.10.1021/jp401585s
  • Hunger, R, Fritsche, R, Jaeckel, B, et al. Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys Rev B - Condens Matter Mater Phys. 2005;72(4):1–7.
  • Hunger R, Pettenkofer C, Scheer R. Dipole formation and band alignment at the Si(111)\CuInS2 hereojunction. J Appl Phys. 2002;91(10):6560–6570.10.1063/1.1458051
  • Schlaff, R. Calibration of photoemission spectra and work function determination. [cited 2017 Jan 15]. Available from: https://rsl.eng.usf.edu/Documents/Tutorials/PEScalibration.pdf
  • Hohenberg P, Kohn W. Density functional theory. Phys Rev B. 1964;136:B864–B871.10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev A. 1965;140:A1133–A1138.10.1103/PhysRev.140.A1133
  • Liu Y, Sun Y, Rockett A. A new simulation software of solar cells—wxAMPS. Solar Energy Mat And Solar Cells. 2012;98:124–128.10.1016/j.solmat.2011.10.010
  • Jones RO, Gunnarsson O. The density functional formalism, its applications and prospects. Rev Mod Phys. 1989;61:689–746.10.1103/RevModPhys.61.689
  • Perdew JP, Burke K, Ernzerhof M. Fluid vesicles in shear flow. Phys Rev Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • The VASP Site. [cited 2017 Aug 16]. Available from: https://www.vasp.at/
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B: Condens Matter Mater Phys. 1993;47(1):558–561.10.1103/PhysRevB.47.558
  • Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B: Condens Matter Mater Phys. 1994;49(20):14251–14269.10.1103/PhysRevB.49.14251
  • Kresse G, Furthmülleer J. Software VASP, Vienna. Phys Rev B: Condens Matter Mater Phys. 1996;54(16):11169–11186.10.1103/PhysRevB.54.11169
  • Kresse G, Furthmülleer J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50.10.1016/0927-0256(96)00008-0
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Phys Condens Matter. 2009;21:1–19.10.1088/0953-8984/21/39/395502
  • Soler, JM, Artacho, E, Gale, JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matt. 2002;14:2745–2779.10.1088/0953-8984/14/11/302
  • Srivastava GP. Theory of semiconductor surface reconstruction. Rep Prog Phys. 1997;60:561.10.1088/0034-4885/60/5/002
  • Neugebauer J, Zywietz T, Scheffler M, et al. Clean and as-covered zinc-blende GaN (001) surfaces: Novel surface structures and surfactant behavior. Phys Rev Lett. 1998;80:3097.10.1103/PhysRevLett.80.3097
  • Qian GX, Martin RM, Chadi DJ. First-principles study of the atomic reconstructions and energies of Ga-and As-Stablized GaAs (100) surfaces. Phys Rev B. 1988;38:7649.10.1103/PhysRevB.38.7649
  • Hammer B, Norskov JK. Why gold is the noblest of all the metals. Nature (London). 1995;376:238–240.10.1038/376238a0
  • Bird DM, Clarke LJ, King-Smith RD, et al. First principles calculation of the structure and energy of Si(113). Phys Rev Lett. 1992;69:3785.10.1103/PhysRevLett.69.3785
  • Hung A, Muscat J, Yarovsky I, et al. Density-functional theory studies of pyrite FeS2(100) and (110) surfaces. Surf Sci. 2002;513(3):511–524.10.1016/S0039-6028(02)01849-6
  • Hass KC, Schneider WF, Curioni A, et al. The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science. 1998;282(5387):265–268.10.1126/science.282.5387.265
  • Natan A, Kronik L, Shapira Y. Computing surface dipoles and potentials of self-assembled monolayers from first principles. Appl Surf Sci. 2006;252:7608–7613.10.1016/j.apsusc.2006.03.052
  • Li Y, O’Leary LE, Lewis NS, et al. Combined theoretical and experimental study of band-edge control through surface functionalization. J Phys Chem C. 2013;117(10):5188–5194.10.1021/jp3124583
  • Meyer B, Marx D. Density-functional study of the structure and stability of ZnO surfaces. Phys Rev B. 2003;67:2230.10.1103/PhysRevB.67.035403
  • Ihm J, Zunger A, Cohen ML. Momentum-space formalism for the total energy of solids. J Phys C. 1979;12:4409.10.1088/0022-3719/12/21/009
  • Bengtsson L. Dipole correction for surface supercell calculations. Phys Rev B. 1999;59:12301.10.1103/PhysRevB.59.12301
  • Junquera J, Cohen MH, Rabe KM. Nanoscale smoothing and the analysis of interfacial charge and dipolar densities. J Phys: Condens Matter. 2007;19:213203.
  • Baldereschi A, Baroni S, Resta R. Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. Phys Rev Lett. 1988;61:734.10.1103/PhysRevLett.61.734
  • Fonash SJ, Arch J, Cuiffi J, et al. A manual for AMPS-1D for windows 95/NT. Happy Valley, PA: The Pennsylvania State University; 1997.
  • Liu Y, Sun Y, Rockett A. An improved algorithm for solving equations for intra-band tunneling current in heterojunction solar cells. Thin Solid Films. 2012;520(15):4947.10.1016/j.tsf.2012.03.012
  • Hurkx GAM, Klaasen DBM, Knuvers MPG. A new recombination model for device simulation including tunneling. IEEE Trans Electron Devices. 1991;39:331.
  • Yang K, East JR, Haddad GI. Numerical modeling of abrupt heterojunction using a thermionic-field emission boundary condition. Solid State Electron. 1993;36(3):321.10.1016/0038-1101(93)90083-3
  • Solar Cells Simulation. [cited 2016 Mar 2]. Available from https://wiki.cites.illinois.edu/wiki/display/solarcellsim
  • Chitambar M, Wang Z, Liu Y, et al. Dye-sensitized photocathodes: efficient light-stimulated hole injection into p-GaP under depletion conditions. J Am Chem Soc. 2012;134(25):10670.10.1021/ja304019n
  • Kearney K, Rockett A. Simulation of charge transport and recombination across functionalized Si(111) photoelectrodes. J Electrochem Soc. 2016;163(7):H598–H604.10.1149/2.1331607jes
  • Ida S, Kearney K, Futagami T, et al. Photoelectrochemical H2 evolution using TiO2-coated CaFe2O4 without an external applied bias under visible light irradiation at 470 nm based on device modeling. Sustainable Energy & Fuels. 2017;1:280–287.10.1039/C7SE00084G
  • Kearney K, Iyer A, Rockett A, et al. Effect of surface coverage and composition on the stability and interfacial dipole of functionalized silicon. J Phys Chem C. 2017;121(21):11312–11318.10.1021/acs.jpcc.7b00791
  • Akremi A, Lacharme JP, Sebenne C. Influence of defect on surface scattering of UV photoemitted electrons in near perfect Si(111)1x1-H. A Surf Sci. 1998;402-404:746.10.1016/S0039-6028(97)01016-9
  • Hollinger G, Himpsel FJ. Oxygen chemisorption and oxide formation on Si(111) and Si(100) surfaces. J Vac Sci Technol A. 1983;1:640–645.10.1116/1.572199
  • De Renzi V, Rousseau R, Marchetto D, et al. Metal work-function changes induced by organic adsorbates: A combined experimental and theoretical study. Phys Rev Lett. 2005;95:046804.10.1103/PhysRevLett.95.046804
  • Lichterman MF, Shaner MR, Handler SG, et al. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J Phys Chem Lett. 2013;4:4188–4191.10.1021/jz4022415
  • Hu S, Shaner MR, Beardslee JA, et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science. 2014;344:1005–1009.10.1126/science.1251428
  • Ahmed MG, Kandiel TA, Ahmed AY, et al. Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J Phys Chem C. 2015;119:5864–5871.10.1021/jp512804p
  • Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J Solid State Chem. 1996;126:227–234.10.1006/jssc.1996.0333