9,003
Views
90
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Dye-sensitized photocatalyst for effective water splitting catalyst

Pages 705-723 | Received 26 Jun 2017, Accepted 31 Aug 2017, Published online: 09 Oct 2017

References

  • Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res. 1995;28:141–145.10.1021/ar00051a007
  • Arakawa H, Aresta M, Armor JN, et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev. 2001;101:953–996.10.1021/cr000018s
  • Ogden JM. Prospects for building a hydrogen energy infrastructure. Ann Rev Energy Environ. 1999;24:227–279.10.1146/annurev.energy.24.1.227
  • Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38:253–278.10.1039/B800489G
  • Maeda K, Domen K. Solid Solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater. 2010;22:612–623.10.1021/cm901917a
  • Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic Materials: Possibilities and Challenges. Adv Mater. 2012;24:229–251.10.1002/adma.201102752
  • Sang Y, Liu H, Uamr A. Photocatalysis from UV/Vis to near-infrared light: towards full solar-light spectrum activity. Chem Cat Chem. 2015;7:559–573.10.1002/cctc.201402812
  • Jafari T, Moharreri E, Amin AS, et al. Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules. 2016;21:900.10.3390/molecules21070900
  • Maeda K, Domen K. Photocatalytic water splitting: recent progress. J Phys Chem Lett. 2010;1:2655–2661.10.1021/jz1007966
  • Takata T, Pan C, Domen K. Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater. 2015;16:033506.10.1088/1468-6996/16/3/033506
  • Yuan L, Han C, Yang MQ, et al. Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int Rev Phys Chem. 2016;35:1–36.10.1080/0144235X.2015.1127027
  • Bird RE, Hulstrom RL, Lewis LJ. Terrestrial solar spectral data sets. Solar Energy. 1983;30:563–573.10.1016/0038-092X(83)90068-3
  • Honda K, Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38.
  • Bard AJ. Photoelecrochemisty. Science. 1980;207:139–144.
  • Sato S, White JM. Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett. 1980;72:83–86.10.1016/0009-2614(80)80246-6
  • Kawai T, Sakata T. Photocatalytic decomposition of gaseous water over TiO2 and TiO2—RuO2 surfaces. Chem Phys Lett. 1980;72:87–89.10.1016/0009-2614(80)80247-8
  • Bahnemann DW, Hilgendorff M, Memming R. Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B. 1997;101:4265–4275.10.1021/jp9639915
  • Serpone N, Lawless D, Khairutdinov R. Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0-13.4 nm). relevance to heterogeneous photocatalysis. J Phys Chem. 1995;99:16655–16661.10.1021/j100045a027
  • Tang J, Durrant JR, Klug DR. Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc. 2008;130:13885–13891.10.1021/ja8034637
  • Ong WJ, Tan LL, Ng YH, et al.  Graphitic carbon nitride (g-C3N4) - based photocatalysts for Artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116:7159–7329.10.1021/acs.chemrev.6b00075
  • Dong P, Hou G, Xi X, et al. WO3 -based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano. 2017;4:539–557.10.1039/C6EN00478D
  • Zheng H, Ou JZ, Strano MS, et al. Nanostructured tungsten oxide – properties, synthesis, and applications. Adv Funct Mater. 2011;21:2175–2196.10.1002/adfm.v21.12
  • Li R, Zhang F, Wang D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat Commun. 2013;4:1432.10.1038/ncomms2401
  • Suarez CM, Hernández S, Russo N. BiVO4 as photocatalyst for solar fuels production through water splitting: a short review. Appl Cat A: General. 2015;504:158–170.10.1016/j.apcata.2014.11.044
  • Bao N, Shen L, Takata T, et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater. 2008;20:110–117.10.1021/cm7029344
  • Amirav L, Alivisatos AP. Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett. 2010;1:1051–1054.10.1021/jz100075c
  • Kalisman P, Nakibli Y, Amirav L. Perfect photon-to-hydrogen conversion effciency. Nano Lett. 2016;16:1776–1781.10.1021/acs.nanolett.5b04813
  • Maeda K, Terashima H, Kase K, et al. Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn. 2008;81:927–937.10.1246/bcsj.81.927
  • Hitoki G, Takata T, Kondo JN, et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun. 2002; 1698–1699.10.1039/B202393H
  • Hara M, Nunoshige J, Takata T, et al. Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradication. Chem Commun. 2003; 3000–3001.
  • Hitoki G, Ishikawa A, Tanaka T, et al. Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem Lett. 2002;31:736–737.10.1246/cl.2002.736
  • Lee Y, Nukumizu K, Watanabe T, et al. Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chem Lett. 2006;35:352–353.10.1246/cl.2006.352
  • Kasahara A, Nukumizu K, Hitoki G, et al. Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A. 2002;106:6750–6753.10.1021/jp025961+
  • Kasahara A, Nukumizu K, Takata T, et al. LaTiO2N as a visible-light (≤ 600 nm)-driven photocatalyst (2). J Phy Chem B. 2003;107:791–797.10.1021/jp026767q
  • Matsukawa M, Ishikawa R, Hisatomi T, et al. Enhancing photocatalytic activity of LaTiO2N by removal of surface reconstruction layer. Nano Lett. 2014;14:1038–1041.10.1021/nl404688 h
  • Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc. 2005;127:8286–8287.10.1021/ja0518777
  • Maeda K, Teramura K, Takata T, et al. Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B. 2005;109:20504–20510.10.1021/jp053499y
  • Maeda K, Teramura K, Lu D, et al. Photocatalyst releasing hydrogen from water. Nature. 2006;440:295.10.1038/440295a
  • Sun X, Maeda K, Faucheur ML, et al. Preparation of (Ga1−xZnx) (N1−xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal A. 2007;327:114–121.10.1016/j.apcata.2007.05.005
  • Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting under visible light. J Catal. 2008;254:198–204.10.1016/j.jcat.2007.12.009
  • Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible irradiation. J Photochem Photobiol C: Photochem Rev. 2010;11:179–209.10.1016/j.jphotochemrev.2011.02.003
  • Maeda K. Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C: Photochem Rev. 2011;12:237–268.10.1016/j.jphotochemrev.2011.07.001
  • Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110:6503–6570.10.1021/cr1001645
  • Furube H, Katoh R, Hara H, et al. Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface. J Phys Chem B. 2003;107:4162–4166.10.1021/jp034039c
  • Huber R, Spörlein S, Moser JE, et al. The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J Phys Chem B. 2000;104:8995–9003.10.1021/jp9944381
  • Kallioinen J, Benkö G, Sundström V. Electron transfer from the singlet and triplet excited states of Ru(dcbpy)2(NCS)2 into nanocrystalline TiO2 thin films. J Phys Chem B. 2002;106:4396–4404.10.1021/jp0143443
  • Benkö G, Kallioinen J, Korppi-Tommola JEI. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc. 2002;124:489–493.10.1021/ja016561n
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ. 2012;125:331–349.10.1016/j.apcatb.2012.05.036
  • Kiwi J, Grätzel M. Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature. 1979;281:657–658.10.1038/281657a0
  • Kiwi J, Borgarello E, Pelizzetti E, et al. Cyclic water cleavage by visible light: drastic improvement of yield of H2 and O2 with bifunctional redox cataltsts. Angew Chem Int Ed Engl. 1980;19:646–648.10.1002/(ISSN)1521-3773
  • Duonghong D, Borgarello E, Grätzel M. Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc. 1981;103:4685–4690.10.1021/ja00406a004
  • Borgarello E, Kiwi J, Pelizzetti E, et al. Photochemical cleavage of water by photocatalysis. Nature. 1981;289:158–160.10.1038/289158a0
  • Hirano K, Suzuki E, Ishikawa A, et al. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. J Photochem Photobiol A: Chem. 2000;136:157–161.10.1016/S1010-6030(00)00342-7
  • Vinodgopal K, Hua X, Dahlgren RL, et al. Photochemistry of Ru(bpy)2(dcbpy)2+ on A12O3 and TiO2 surfaces. an insight into the mechanism of photosensitization. J Phys Chem. 1995;99:10883–10889.10.1021/j100027a032
  • Bae E, Choi W, Park J, et al. Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions. J Phys Chem B. 2004;108:14093–14101.10.1021/jp047777p
  • Bae R, Choi W. Effect of the anchoring group (carboxylate vs phosphonate) in ru-complex-sensitized TiO2 on hydrogen production under visible light. J Phys Chem B. 2006;110:14792–14799.10.1021/jp062540+
  • Lee KE, Gomez MA, Elouatik S, et al. Further Understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir. 2010;26:9575–9583.10.1021/la100137u
  • Maeda K, Sahara G, Eguchi M, et al. Hybrids of a ruthenium(II) polypyridyl complex and a metal oxide nanosheet for dye-sensitized hydrogen evolution with visible light: effects of the energy structure on photocatalytic activity. ACS Catal. 2015;5:1700–1707.10.1021/acscatal.5b00040
  • Zheng HQ, Yong H, Ou-Yang T. A new photosensitive coordination compound [RuL(bpy)2](PF6)2 and its application in photocatalytic H2 production under the irradiation of visible light. Int J Hydro Energy. 2013;38:12938–12945.10.1016/j.ijhydene.2013.04.138
  • Amadelli R, Argazzi R, Bignozzi CA, et al. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-. J Am Chem Soc. 1990;112:7099–7103.10.1021/ja00176a003
  • Peng T, Ke D, Cai P, et al. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. J Power Sources. 2008;180:498–505.10.1016/j.jpowsour.2008.02.002
  • Peng T, Ke D, Yi H, et al. Photosensitization of different ruthenium(II) complex dyes on TiO2 for photocatalytic H2 evolution under visible-light. Chem Phys Lett. 2008;460:216–219.10.1016/j.cplett.2008.06.001
  • Zhang X, Veikko U, Mao J, et al. Visible-light-induced photocatalytic hydrogen production over binuclear RuII–bipyridyl dye-sensitized TiO2 without noble metal loading. Chem Eur J. 2012;18:12103–12111.10.1002/chem.201200725
  • Veikko U, Zhang X, Peng T, et al. The synthesis and characterization of dinuclear ruthenium sensitizers and their applications in photocatalytic hydrogen production. Spectrochimica Acta A: Mol Biomol Spect. 2013;105:539–544.10.1016/j.saa.2012.12.061
  • Ladomenou K, Natali M, Iengo E, et al. Photochemical hydrogen generation with porphyrin-based systems. Coord Chem Rev. 2015;304-305:38–54.10.1016/j.ccr.2014.10.001
  • Malinka EA, Kamalov GL, Vodzinskii SV, et al. Hydrogen production from water by visible light using zinc porphyrin- sensitized platinized titanium dioxide. J Photochem Photobiol A: Chem. 1995;90:153–158.10.1016/1010-6030(95)04093-U
  • Topoglidis E, Campbell CJ, Palomares E, et al. Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. Chem Commun. 2002; 1518–1519.10.1039/b203448d
  • Astuti Y, Palomares E, Haque SA. Triplet state photosensitization of nanocrystalline metal oxide electrodes by zinc-substituted cytochrome c: application to hydrogen evolution. J Am Chem Soc. 2005;127:15120–15126.10.1021/ja0533444
  • Kim W, Tachikawa T, Majima T, et al. Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energy Environ Sci. 2010;3:1789–1795.10.1039/c0ee00205d
  • Zhu M, Lu Lu Y, Du Y, et al. Photocatalytic hydrogen evolution without an electron mediator using a porphyrinepyrene conjugate functionalized Pt nanocomposite as a photocatalyst. Int J Hydro Energy. 2011;36:4298–4304.10.1016/j.ijhydene.2011.01.007
  • Hasobe T, Sakai H, Mase K, et al. Remarkable enhancement of photocatalytic hydrogen evolution efficiency utilizing an internal cavity of supramolecular porphyrin hexagonal nanocylinders under visible-light irradiation. J Phys Chem C. 2013;117:4441–4449.10.1021/jp400381 h
  • Zhu M, Li Z, Xiao B, et al. Surfactant assistance in improvement of photocatalytic hydrogen production with the porphyrin noncovalently functionalized graphene nanocomposite. ACS Appl Mater Interfaces. 2013;5:1732–1740.10.1021/am302912v
  • Ge R, Li X, Kang SZ, et al. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer. Appl Cat B: Environ. 2016;187:67–74.10.1016/j.apcatb.2016.01.024
  • Yuan YJ, Tu JR, Ye ZJ, et al. Visible-light-driven hydrogen production from water in a noble- metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes Pigments. 2013;123:285–292.
  • Ge R, Li X, Zhuang B, et al. Assembly mechanism and photoproduced electron transfer for a novel cubic Cu2O/tetrakis(4-hydroxyphenyl)porphyrin hybrid with visible photocatalytic activity for hydrogen evolution. Appl Cat B: Environ. 2017;211:296–304.10.1016/j.apcatb.2017.04.056
  • Hara K, Wang ZS, Sato T, et al. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B. 2005;109:15476–15482.10.1021/jp0518557
  • Houlding VH, Grätzel M. Photochemical H2 generation by visible light. Sensitization of titanium dioxide particles by surface complexation with 8-hydroxyquinoline. J Am Chem Soc. 1983;105:5695–5696.10.1021/ja00355a032
  • Shimizu T, Iyoda T, Koide Y. An advanced visible-light-induced water reduction with dye-sensitized semiconductor powder catalyst. J Am Chem Soc. 1985;107:35–41.10.1021/ja00287a007
  • Abe R, Hara K, Sayama K, et al. Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. J Photochem Photobiol A: Chem. 2000;137:63–69.10.1016/S1010-6030(00)00351-8
  • Moser J, Grätzel M. Photosensitized electron injection in colloidal semiconductors. J Am Chem Soc. 1984;106:6557–6564.10.1021/ja00334a017
  • Chattrtjee D. Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst. Catal Commun. 2010;11:336–339.10.1016/j.catcom.2009.10.026
  • Jin Z, Zhang X, Lu G, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2 —Investigation of different noble metal loading. J Mol Cat A: Chem. 2006;259:275–280.10.1016/j.molcata.2006.06.035
  • Jin Z, Zhang X, Li Y, et al. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Cat Comm. 2007;8: 1267–1273.10.1016/j.catcom.2006.11.019
  • Sreethawong T, Junbua C, Chavadej S. Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst. J Power Sources. 2009;190:513–524.10.1016/j.jpowsour.2009.01.054
  • Rrungiaroentawon N, Onsuratoom S, Chavadej S. Hydrogen production from water splitting under visible light irradiation using sensitized mesoporous-assembled TiO2-SiO2 mixed oxide photocatalysts. Int J Hydro Energy. 2012;37:11061–11071.10.1016/j.ijhydene.2012.04.120
  • Chowdhury R, Gomaa H, Ray AK. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation. Chemosphere. 2015;121:54–61.10.1016/j.chemosphere.2014.10.076
  • Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chem Phys Lett. 2002;362:441–444.10.1016/S0009-2614(02)01140-5
  • Abe R, Sayama K, Arakawa H. Significant influence of solvent on hydrogen production from aqueous I3−/I− redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chem Phys Lett. 2003;379:230–235.10.1016/j.cplett.2003.07.026
  • Ikeda S, Abe C, Torimoto T, et al. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. J Photocehm Photobiol A: Chem. 2003;160:61–67.10.1016/S1010-6030(03)00222-3
  • Zhang G, Choi W. A low-cost sensitizer based on a phenolic resin for charge-transfer type photocatalysts working under visible light. Chem Commun. 2012;48:10621–10623.10.1039/c2cc35751 h
  • Kamegawa T, Matsuura S, Seto H, et al. A visible-light-harvesting assembly with a sulfocalixarene linker between dyes and a Pt-TiO2 photocatalyst. Angew Chem Int Ed. 2013;52:916–919.10.1002/anie.201206839
  • Zhang X, Peng T, Song S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A. 2016;4:2365–2402.10.1039/C5TA08939E
  • Choi SK, Yang HS, Kin JH, et al. Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. App Cat B: Environ. 2012;121-122:206–213.10.1016/j.apcatb.2012.04.011
  • Lee SH, Park Y, Wee KR, et al. Significance of hydrophilic characters of organic dyes in visible-light hydrogen generation based on TiO2. Org Lett. 2010;12:460–463.10.1021/ol9026182
  • Han WS, Wee KR, Kim HY, et al. Hydrophilicity control of visible-light hydrogen evolution and dynamics of the charge-separated state in dye/TiO2/Pt hybrid systems. Chem Eur J. 2012;18:15368–15381.10.1002/chem.v18.48
  • Watanabe M, Hagiwara H, Ogata Y, et al. Impact of alkoxy chain length on carbazole-based, visible light-driven, dye sensitized photocatalytic hydrogen production. J Mater Chem A. 2015;3:21713–21721.10.1039/C5TA04991A
  • Lee J, Kwak J, Ko KC, et al. Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chem Commun. 2012;48:11431–11433.10.1039/c2cc36501d
  • Manfredi N, Cecconi B, Calabrese V. Dye-sensitized photocatalytic hydrogen production: distinct activity in a glucose derivative of a phenothiazine dye. Chem Commun. 2016;52:6977–6980.10.1039/C6CC00390G
  • Tiwari A, Mondal I, Pal U. Visible light induced hydrogen production over thiophenothiazine-based dye sensitized TiO2 photocatalyst in neutral water. RSC Adv. 2015;5:31415–31421.10.1039/C5RA03039 K
  • Watanabe M, Hagiwara H, Iribe A, et al. Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. J Mater Chem A. 2014;2:12952–12961.10.1039/C4TA02720E
  • Tiwari A, Pal U. Effect of donor-donor-π-acceptor architecture of triphenylamine-based organic sensitizers over TiO2 photocatalysts for visible-light-driven hydrogen production. Int J Hydro Energy. 2015;40:9069–9079.10.1016/j.ijhydene.2015.05.101
  • Narayanaswamy K, Tiwari A, Mondal I. Dithiafulvalene functionalized diketopyrrolopyrrole based sensitizers for efficient hydrogen production. Phys Chem Chem Phys. 2015;17:13710–13718.10.1039/C5CP01777G
  • Yu F, Cui SC, Li X. Effect of anchoring groups on N-annulated perylene-based sensitizers for dye-sensitized solar cells and photocatalytic H2 evolution. Dyes Pigments. 2017;139:7–18.10.1016/j.dyepig.2016.12.013
  • Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2008;9:76–80.
  • Sierra M, Borges E, Esparaza P, et al. Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater. Sci Technol Adv Mater. 2016;17:659–668.10.1080/14686996.2016.1235962
  • Takanabe K, Kamata K, Wang X, et al. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys. 2010;12:13020–13025.10.1039/c0cp00611d
  • Lijuan Yu, Zhang X, Zhuang C, et al. Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production. Phys Chem Chem Phys. 2014;16:4106–4114.
  • Zhang X, Yu L, Peng T, et al. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2014;4:162–170.10.1021/cs400863c
  • Min S, Lu G. Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J Phys Chem C. 2012;116:19644–19652.10.1021/jp304022f
  • Yan H, Huang Y. Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun. 2011;47:4168–4170.10.1039/c1cc10250 h
  • Zhang X, Peng B, Zhang S, et al. Robust wide visible-light-responsive photoactivity for H2 production over a polymer/polymer heterojunction photocatalyst: the significance of sacrificial regent. ACS Sustainable Chem Eng. 2015;3:1501–1509.10.1021/acssuschemeng.5b00211
  • He F, Chen G, Yu Y, et al. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl Mater Interfaces. 2014;6:7171–7179.10.1021/am500198y
  • Yan SC, Lv SB, Li ZC, et al.  Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 2010;39:1488–1491.10.1039/B914110C
  • Yan H, Yang H. TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compounds. 2011;509:L26–L29.10.1016/j.jallcom.2010.09.201
  • Gao ZD, Qu YF, Zhou X, et al.  Pt-decorated g- C3N4 / TiO2 nanotube arrays with enhanced visible-light photocatalytic activity for H2 evolution. ChemistryOpen. 2016;5:197–200.10.1002/open.201500219
  • Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res. 2013;46:1900–1909.10.1021/ar300227e
  • Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem. 1972;39:163–184.10.1016/S0022-0728(72)80485-6
  • Trasatti S. Electrocatalysis by oxides — Attempt at a unifying approach. J Electroanal Chem. 1980;111:125–131.10.1016/S0022-0728(80)80084-2
  • Zakharenko VS, Blatov AV, Parmon VN. Pt(arizarine)2 complex adsorbed on titanium, dioxide as a sensitizer in photocatalytic evolution of dihydrogen. React Kinet Catal Lett. 1988;36:295–300.10.1007/BF02063821
  • Zhang J, Du P, Schneider J, et al. Photogeneration of hydrogen from water using an integrated system based on TiO2 and platinum(II) diimine dithiolate sensitizers. J Am Chem Soc. 2007;129:7726–7727.10.1021/ja071789 h
  • Jarosz P, Du P, Schneider J, et al. Platinum(II) terpyridyl acetylide complexes on platinized TiO2: toward the photogeneration of H2 in aqueous media. Inorg Chem. 2009;48:9653–9663.10.1021/ic9001913
  • Wilson AD, Newell RH, McNevin MJ, et al. Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc. 2006;128:358–366.10.1021/ja056442y
  • Wilson A, Shoemaker RK, Miedaner A, et al. Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc Natl Acad Sci USA. 2007;104:6951–6956.10.1073/pnas.0608928104
  • Jacobsen GM, Yang JY, Twamley B, et al. Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere. Energy Environ Sci. 2008;1:167–174.10.1039/b805309j
  • Wang D, Zhang Y, Chen W. A novel nickel–thiourea–triethylamine complex adsorbed on graphitic C3N4 for low-cost solar hydrogen production. Chem Commun. 2014;50:1754–1756.10.1039/c3cc48141 g
  • Das A, Han Z, Brennessel WW, et al. Nickel complexes for robust light-driven and electrocatalytic hydrogen production from water. ACS Catal. 2015;5:1397–1406.10.1021/acscatal.5b00045
  • Gross MA, Reynal A, Durrant JR, et al. Versatile photocatalytic systems for H2 generation in water based on an efficient DuBois-type nickel catalyst. J Am Chem Soc. 2014;136:356–366.10.1021/ja410592d
  • Eckenhoff WT, McNamara WR, Du P, et al. Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochim Biophys Acta. 2013;1827:958–973.10.1016/j.bbabio.2013.05.003
  • Lakadamyali F, Reisner E. Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem Commun. 2011;47:1695–1697.10.1039/c0cc04658b
  • Lakadamyali F, Reynal A, Kato M, et al. Electron transfer in dye-sensitised semiconductors modified with molecular cobalt catalysts: photoreduction of aqueous protons. Chem Eur J. 2012;18:15464–15475.10.1002/chem.v18.48
  • Reynal A, Lakadamyali F, Gross MA, et al. Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. Energy Environ Sci. 2013;6:3291–3300.10.1039/c3ee40961a
  • Willkomm J, Muresan NM, Reisner E. Enhancing H2 evolution performance of an immobilised cobalt catalyst by rational ligand design. Chem Sci. 2015;6:2727–2736.10.1039/C4SC03946G
  • Bard AJ. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors. J Photochem. 1979;10:59–75.10.1016/0047-2670(79)80037-4
  • Maeda K. Z-scheme water splitting using two difficient semiconductor photocatalysts. ACS Catal. 2013;3:1486–1503.10.1021/cs4002089
  • Li H, Tu W, Zhou Y, et al. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv Sci. 2016;3:1500389.10.1002/advs.201500389
  • Grätzel M. Photoelectrochemical cells. Nature. 2001;414:338–344.10.1038/35104607
  • Abe R, Shinmei K, Hara K, et al. Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun. 2009; 3577–3579.10.1039/b905935 k
  • Abe R, Shinmei K, Koumura N, et al. Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc. 2013;135:16872–16884.10.1021/ja4048637
  • Iwase A, Ng YH, Ishiguro Y, et al. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc. 2011;133:11054–11057.10.1021/ja203296z
  • Ma D, Wu J, Gao M, et al.  Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem Engineer J. 2016;290:136–146.10.1016/j.cej.2016.01.031
  • Tian N, Huang H, He Y, et al.  Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic – inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 2015; 44: 4297–4307.10.1039/C4DT03905 J
  • Katsumata H, Sakai T, Suzuki T, et al.  Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind Eng Chem Res. 2014;53:8018–8025.10.1021/ie5012036
  • Katsumata H, Tachi Y, Suzuki T, et al.  Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalyst. RSC Adv. 2014;4:21405–21409.10.1039/C4RA02511C
  • Martin DJ, Rerdon PJT, Moniz SJA, et al. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J Am Chem Soc. 2014;136:12568–12571.10.1021/ja506386e
  • Zhang Y, Mao F, Yan H, et al. A polymer – metal – polymer – metal heterostructure for enhanced photocatalytic hydrogen production. J Mater Chem A. 2015;3:109–115.10.1039/C4TA04636F
  • Hagiwara H, Ono N, Inoue T, et al. Dye-sensitizer effects on a Pt/KTa(Zr)O3 catalyst for the photocatalytic splitting of water. Angew Chem Int Ed. 2006;45:1420–1422.10.1002/(ISSN)1521-3773
  • Hagiwara H, Matsumoto H, Ishihara T. Improvement of photocatalytic activity of metal sulfide by organic dye for H2 formation from water. Electrochemistry. 2008;76:125–127.10.5796/electrochemistry.76.125
  • Hidehisa H, Kumagae K, Ishihara T. Effects of nitrogen dopingon photocatalytic water-splitting activity of Pt KTa0.92Zr0.08O3 perovskite oxide catalyst. Chem Lett. 2010; 39: 498–499.
  • Hidehisa H, Inoue T, Kaneko K, et al. Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting. Chem Eur J. 2009;15:12862–12870.
  • Hidehisa H, Ono N, Ishihara T. Effects of redox potential of metallophthalocyanine dye on photocatalytic activity of KTa(Zr)O3 for water splitting. Chem Lett. 2010;39(178):179.
  • Nagatomo M, Hagiwara H, Ida S, et al. Modification of organic dyes on photocatalytic water splitting activity of KTa(Zr)O3. Electrochemisty. 2011;79:779–782.10.5796/electrochemistry.79.779
  • Hagiwara H, Higashi K, Watanabe M, et al. Effect of porphyrin molecular structure on water splitting activity of a KTaO3 photocatalyst. Catalysis. 2016;6:42.
  • Hagiwara H, Watanabe M, Daio T, et al. Modification effects of meso-hexakis(pentafluorophenyl) [26]hexaphyrin aggregates on the photocatalytic water splitting. Chem Commun. 2014;50:12515–12518.10.1039/C4CC05127 K