5,207
Views
47
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality

ORCID Icon
Pages 724-740 | Received 10 May 2017, Accepted 05 Sep 2017, Published online: 05 Oct 2017

References

  • Weissmuller J, Newman RC, Jin HJ, et al. Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull. 2009;34:577–586.10.1557/mrs2009.157
  • Newman RC, Corcoran SG, Erlebacher J, et al. Alloy corrosion. MRS Bull. 1999;24(7):24–28.10.1557/S0883769400052660
  • Raney M, inventor. Method of producing finely-divided nickel. United States patent US 1,628,190. 1927 May 10.
  • Pickering HW, Swann PR. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion. 1963;19:373–389.10.5006/0010-9312-19.11.373
  • Swann PR. Mechanism of corrosion tunneling with special reference to Cu3Au. Corrosion. 1969;25:147–150.
  • Forty AJ. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature. 1979;282:597–598.10.1038/282597a0
  • Erlebacher J, Aziz MJ, Karma A, et al. Evolution of nanoporosity in dealloying. Nature. 2001;410:450–453.10.1038/35068529
  • Ding Y, Chen MW. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009;34:569–576.10.1557/mrs2009.156
  • Qiu HJ, Li X, Xu HT, et al. Nanoporous metal as a platform for electrochemical and optical sensing. J Mater Chem C. 2014;2:9788–9799.10.1039/C4TC01913 J
  • Qiu HJ, Xu HT, Liu L, et al. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale. 2015;7:386–400.10.1039/C4NR05778C
  • Detsi E, Vukovic Z, Punzhin S, et al. Fine-tuning the feature size of nanoporous silver. Cryst Eng Comm. 2012;14:5402–5406.10.1039/c2ce25313e
  • Zhang ZH, Wang Y, Qi Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C. 2009;113:12629–12636.10.1021/jp811445a
  • Qiu HJ, Shen X, Wang JQ, et al. Aligned nanoporous Pt-Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015;5:3779–3785.10.1021/acscatal.5b00073
  • Hakamada M, Nakano H, Furukawa T, et al. Hydrogen storage properties of nanoporous palladium fabricated by dealloying. J Phys Chem C. 2010;114:868–873.10.1021/jp909479 m
  • Wang L, Briot NJ, Swartzentruber PD, et al. Magnesium alloy precursor thin films for efficient, practical fabrication of nanoporous metals. Metall Mat Trans A. 2014;45:1–5.10.1007/s11661-013-2127-7
  • Hakamada M, Takahashi M, Furukawa T, et al. Coercivity of nanoporous Ni produced by dealloying. Appl Phys Lett. 2009;94:153105.10.1063/1.3119663
  • Hakamada M, Mabuchi M. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Cu-Mn alloys. J Alloys Compd. 2009;485:583–587.10.1016/j.jallcom.2009.06.031
  • Qiu HJ, Kang JL, Liu P, et al. Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J Power Sources. 2014;247:896–905.10.1016/j.jpowsour.2013.08.070
  • Chen LY, Yu JS, Fujita T, et al. Nanoporous copper with tunable nanoporosity for SERS applications. Adv Funct Mater. 2009;19:1221–1226.10.1002/adfm.v19:8
  • Hayes JR, Hodge AM, Biener J, et al. Monolithic nanoporous copper by dealloying Mn-Cu. J Mater Res. 2006;21:2611–2616.10.1557/jmr.2006.0322
  • Panagiotopoulos NT, Jorge AM, Rebai I, et al. Nanoporous titanium obtained from a spinodally decomposed Ti alloy. Microporous Mesoporous Mater. 2016;222:23–26.10.1016/j.micromeso.2015.09.054
  • Hakamada M, Motomura J, Hirashima F, et al. Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater Trans. 2012;53:524–530.10.2320/matertrans.M2011326
  • Yu J, Ding Y, Xu C, et al. Nanoporous metals by dealloying multicomponent metallic glasses. Chem Mater. 2008;20:4548–4550.10.1021/cm8009644
  • Ding Y, Kim YJ, Erlebacher J. Nanoporous gold leaf: ‘Ancient technology’/advanced material. Adv Mater. 2004;16:1897–1900.10.1002/(ISSN)1521-4095
  • Senior NA, Newman RC. Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology. 2006;17:2311–2316.10.1088/0957-4484/17/9/040
  • Qian LH, Chen MW. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl Phys Lett. 2007;91:083105.10.1063/1.2773757
  • Qian LH, Yan XQ, Fujita T, et al. Surface enhanced Raman scattering of nanoporous gold: smaller pore sizes stronger enhancements. Appl Phys Lett. 2007;90:153120.10.1063/1.2722199
  • Kuwano-Nakatani S, Fujita T, Uchisawa K, et al. Environment-sensitive thermal coarsening of nanoporous gold. Mater Trans. 2015;56:468–472.10.2320/matertrans.MF201403
  • Chen AY, Shi SS, Liu F, et al. Effect of annealing atmosphere on the thermal coarsening of nanoporous gold films. Appl Surf Sci. 2015;355:133–138.10.1016/j.apsusc.2015.07.065
  • Sun Y, Burger SA, Balk TJ. Controlled ligament coarsening in nanoporous gold by annealing in vacuum versus nitrogen. Philos Mag. 2014;94:1001–1011.10.1080/14786435.2013.876113
  • Fujita T, Qian LH, Inoke K, et al. Three-dimensional morphology of nanoporous gold. Appl Phys Lett. 2008;92:251902.10.1063/1.2948902
  • Qian LH, Ding Y, Fujita T, et al. Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures. Langmuir. 2008;24:4426–4429.10.1021/la703621c
  • Yang M, Zhang L, Chen B, et al. Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering. Nanotechnology. 2017;28:055301.10.1088/1361-6528/28/5/055301
  • Chen LY, Fujita T, Ding Y, et al. A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing. Adv Funct Mater. 2010;20:2279–2285.10.1002/adfm.v20:14
  • Ding Y, Chen MW, Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc. 2004;126:6876–6877.10.1021/ja0320119
  • Zeis R, Mathur A, Fritz G, et al. Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources. 2007;165:65–72.10.1016/j.jpowsour.2006.12.007
  • Xiao S, Xiao F, Hu Y, et al. Hierarchical nanoporous gold-platinum with heterogeneous interfaces for methanol electrooxidation. Sci Rep. 2014;4:4370.
  • Kiani A, Hatami S. Fabrication of platinum coated nanoporous gold film electrode: a nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy. 2010;35:5202–5209.10.1016/j.ijhydene.2010.03.014
  • Du Y, Xu JJ, Chen HY. Ultrathin platinum film covered high-surface-area nanoporous gold for methanol electro-oxidation. Electrochem Commun. 2009;11:1717–1720.10.1016/j.elecom.2009.07.004
  • Jia C, Yin H, Ma H, et al. Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J Phys Chem C. 2009;113:16138–16143.10.1021/jp904191 k
  • Kudo A, Fujita T, Lang X, et al. Enhanced electrochemical performances of nanoporous gold by surface modification of titanium dioxide nanoparticles. Mater Trans. 2010;51:1566–1569.10.2320/matertrans.MAW201014
  • Chen AY, Shi SS, Wang JW, et al. Microstructure and electrocatalytic performance of nanoporous gold foils decorated by TiO2 coatings. Surf Coat Technol. 2016;286:113–118.10.1016/j.surfcoat.2015.10.014
  • Biener MM, Biener J, Wichmann A, et al. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett. 2011;11:3085–3090.10.1021/nl200993 g
  • Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotech. 2011;6:232–236.10.1038/nnano.2011.13
  • Kang J, Chen L, Hou Y, et al. Electroplated thick manganese oxide films with ultrahigh capacitance. Adv Energy Mater. 2013;3:857–863.10.1002/aenm.v3.7
  • Yu Y, Gu L, Lang X, et al. Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater. 2011;23:2443–2447.10.1002/adma.201004331
  • Chen LY, Hou Y, Kang JL, et al. Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv Energy Mater. 2013;3:851–856.10.1002/aenm.v3.7
  • Ge X, Chen L, Zhang L, et al. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater. 2014;26:3100–3104.10.1002/adma.201305678
  • Tan Y, Liu P, Chen L, et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv Mater. 2014;26:8023–8028.10.1002/adma.v26.47
  • Hou Y, Chen L, Zhang L, et al. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors. J Power Sources. 2013;225:304–310.10.1016/j.jpowsour.2012.10.067
  • Hou Y, Chen L, Liu P, et al. Nanoporous metal based flexible asymmetric pseudocapacitors. J Mater Chem A. 2014;2:10910–10916.10.1039/C4TA00969 J
  • Wang K, Stenner C, Weissmüller J. A nanoporous gold-polypyrrole hybrid nanomaterial for actuation. Sens Actuators B: Chem. 2017;248:622–629.10.1016/j.snb.2017.04.025
  • Lang X, Zhang L, Fujita T, et al. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors. J Power Sources. 2012;197:325–329.10.1016/j.jpowsour.2011.09.006
  • Meng F, Ding Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater. 2011;23:4098–4102.10.1002/adma.v23.35
  • Detsi E, Onck P, De Hosson JTM. Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites. ACS Nano. 2013;7:4299–4306.10.1021/nn400803x
  • Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys. 1985;57:783–826.10.1103/RevModPhys.57.783
  • Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B. 2000;104:11965–11971.10.1021/jp0025476
  • Wiley BJ, Im SH, Li ZY, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B. 2006;110:15666–15675.10.1021/jp0608628
  • Mikac L, Ivanda M, Gotic M, et al. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application. J Nanopart Res. 2014;16:451.10.1007/s11051-014-2748-9
  • Lang XY, Guan PF, Zhang L, et al. Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold. J Phys Chem C. 2009;113:10956–10961.10.1021/jp903137n
  • Zhang L, Lang X, Hirata A, et al. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. ACS Nano. 2011;5:4407–4413.10.1021/nn201443p
  • Liu H, Zhang L, Lang X, et al. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep. 2011;1:1102.10.1038/srep00112
  • Chen LY, Zhang L, Fujita T, et al. Surface-enhanced Raman scattering of silver@nanoporous copper core-shell composites synthesized by an in situ sacrificial template approach. J Phys Chem C. 2009;113:14195–14199.10.1021/jp904081s
  • Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem Lett. 1987;16:405–408.10.1246/cl.1987.405
  • Fujitani T, Nakamura I, Akita T, et al. Hydrogen dissociation by gold clusters. Angew Chem Int Ed. 2009;48:9515–9518.10.1002/anie.200905380
  • Fujitani T, Nakamura I. Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew Chem Int Ed. 2011;50:10144–10147.10.1002/anie.201104694
  • Cargnello M, Doan-Nguyen VVT, Gordon TR, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science. 2013;341:771–773.10.1126/science.1240148
  • Takei T, Akita T, Nakamura I, et al. Heterogeneous catalysis by gold. Adv Catal. 2012;55:1–126.
  • Haruta M. Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday Discuss. 2011;152:11–32.10.1039/c1fd00107 h
  • Xu C, Su J, Xu X, et al. Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc. 2007;129:42–43.10.1021/ja0675503
  • Zielasek V, Jürgens B, Schulz C, et al. Gold catalysts: nanoporous gold foams. Angew Chem Int Ed. 2006;45:8241–8244.10.1002/(ISSN)1521-3773
  • Fujita T, Guan P, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater. 2012;11:775–780.10.1038/nmat3391
  • Liu P, Guan P, Hirata A, et al. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv Mater. 2016;28:1753–1759.10.1002/adma.201504032
  • Biener J, Biener MM, Madix RJ, et al. Nanoporous gold: understanding the origin of the reactivity of a 21st century catalyst made by pre-Columbian technology. ACS Catal. 2015;5:6263–6270.10.1021/acscatal.5b01586
  • Asao N, Ishikawa Y, Hatakeyama N, et al. Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed. 2010;49:10093–10095.10.1002/anie.201005138
  • Takale BS, Bao M, Yamamoto Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org Biomol Chem. 2014;12:2005–2027.10.1039/c3ob42207 k
  • Takale BS, Feng X, Lu Y, et al. Unsupported nanoporous gold catalyst for chemoselective hydrogenation reactions under low pressure: effect of residual silver on the reaction. J Am Chem Soc. 2016;138:10356–10364.10.1021/jacs.6b06569
  • Jin T, Yan M, Menggenbateer, et al. Nanoporous copper metal catalyst in click chemistry: nanoporosity-dependent activity without supports and bases. Adv Synth Catal. 2011;353:3095–3100.10.1002/adsc.v353.17
  • Tanaka S, Kaneko T, Asao N, et al. A nanostructured skeleton catalyst: Suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun. 2011;47:5985–5987.10.1039/c1cc10710 k
  • Kaneko T, Tanaka S, Asao N, et al. Reusable and sustainable nanostructured skeleton catalyst: Heck reaction with nanoporous metallic glass Pd (PdNPore) as a support, stabilizer and ligand-free catalyst. Adv Synth Catal. 2011;353:2927–2932.10.1002/adsc.v353.16
  • Abe H. Current status and future of the car exhaust catalyst should aim for ~ Tsukuba Innovation Arena (TIA): outline and Outlook ~. Sci Technol Trends Q Rev. 2011;039:21–31.
  • Fujita T, Abe H, Tanabe T, et al. Earth-abundant and durable nanoporous catalyst for exhaust-gas conversion. Adv Funct Mater. 2016;26:1609–1616.10.1002/adfm.v26.10
  • Tanabe T, Imai T, Tokunaga T, et al. Nanophase-separated Ni3Nb as an automobile exhaust catalyst. Chem Sci. 2017;8:3374–3378.10.1039/C6SC05473 K
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Geim AK. Random walk to graphene (Nobel Lecture). Angew Chem Int Ed. 2011;50:6966–6985.10.1002/anie.v50.31
  • Auton G, Zhang J, Kumar RK, et al. Graphene ballistic nano-rectifier with very high responsivity. Nat Commun. 2016;7:11670.10.1038/ncomms11670
  • Zhang Y, Zhang L, Zhou C. Review of chemical vapor deposition of graphene and related applications. Acc Chem Res. 2013;46:2329–2339.10.1021/ar300203n
  • Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem. 2011;21:3324–3334.10.1039/C0JM02126A
  • Ito Y, Tanabe Y, Qiu HJ, et al. High-quality three-dimensional nanoporous graphene. Angew Chem Int Ed. 2014;53:4822–4826.10.1002/anie.201402662
  • Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew Chem Int Ed. 2015;54:2131–2136.10.1002/anie.201410050
  • Tanabe Y, Ito Y, Sugawara K, et al. Electric properties of Dirac fermions captured into 3D nanoporous graphene networks. Adv Mater. 2016;28:10304–10310.10.1002/adma.201601067
  • D’Apuzzo F, Piacenti AR, Giorgianni F, et al. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene. Nat Commun. 2017;8:14885.10.1038/ncomms14885
  • Ito Y, Shen Y, Hojo D, et al. Correlation between chemical dopants and topological defects in catalytically active nanoporous graphene. Adv Mater. 2016;28:10644–10651.10.1002/adma.201604318
  • Ito Y, Qiu HJ, Fujita T, et al. Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv Mater. 2014;26:4145–4150.10.1002/adma.v26.24
  • Qiu HJ, Ito Y, Cong WT, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed. 2015;54:14031–14035.10.1002/anie.201507381
  • Han J, Guo X, Ito Y, et al. Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries. Adv Energy Mater. 2016;6:1501870.10.1002/aenm.201501870
  • Han J, Huang G, Ito Y, et al. Full performance nanoporous graphene based Li-O2 batteries through solution phase oxygen reduction and redox-additive mediated Li2O2 oxidation. Adv Energy Mater. 2017;7:1601933.10.1002/aenm.v7.7
  • Ito Y, Tanabe Y, Han J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv Mater. 2015;27:4302–4307.10.1002/adma.v27.29
  • Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc. 2003;125:7772–7773.10.1021/ja035318 g
  • Qi Z, Weissmüller J. Hierarchical nested-network nanostructure by dealloying. ACS Nano. 2013;7:5948–5954.10.1021/nn4021345
  • Qi Z, Vainio U, Kornowski A, et al. Porous gold with a nested-network architecture and ultrafine structure. Adv Funct Mater. 2015;25:2530–2536.10.1002/adfm.201404544
  • Guo X, Han J, Liu P, et al. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Sci Rep. 2016;6:19.10.1038/srep33466
  • Zhang Z, Wang Y, Qi Z, et al. Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys. J Phys Chem C. 2009;113:1308–1314.10.1021/jp808569 g
  • Fujita T, Kanoko Y, Ito Y, et al. Nanoporous metal papers for scalable hierarchical electrode. Adv Sci. 2015;2:1500086.10.1002/advs.201500086
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61:315–360.10.1080/09506608.2015.1116649
  • Japanese Unexamined Patent Application Publication No. 2015-193866.
  • Peraza-Hernandez EA, Hartl DJ, Malak RJ, et al. Origami-inspired active structures: a synthesis and review. Smart Mater Struct. 2014;23:094001.10.1088/0964-1726/23/9/094001
  • Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries. Sci Rep. 2015;5:10988.
  • Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt. Mater Lett. 2011;65:1076–1078.10.1016/j.matlet.2011.01.054
  • Kim JW, Wada T, Kim SG, et al. Sub-micron porous niobium solid electrolytic capacitor prepared by dealloying in a metallic melt. Mater Lett. 2014;116:223–226.10.1016/j.matlet.2013.11.036
  • Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett. 2014;14:4505–4510.10.1021/nl501500 g
  • Wada T, Kato H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scripta Mater. 2013;68:723–726.10.1016/j.scriptamat.2013.01.011
  • Yu SG, Yubuta K, Wada T, et al. Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon. 2016;96:403–410.10.1016/j.carbon.2015.09.093
  • Wada T, Setyawan AD, Yubuta K, et al. Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Scripta Mater. 2011;65:532–535.10.1016/j.scriptamat.2011.06.019
  • Geslin PA, Mccue I, Gaskey B, et al. Topology-generating interfacial pattern formation during liquid metal dealloying. Nat Commun. 2015;6:8887.10.1038/ncomms9887
  • Wada T, Yamada J, Kato H. Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J Power Sources. 2016;306:8–16.10.1016/j.jpowsour.2015.11.079
  • McCue I, Benn E, Gaskey B, et al. Dealloying and dealloyed materials. Annu Rev Mater Res. 2016;46:263–286.10.1146/annurev-matsci-070115-031739
  • Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–489.10.1038/nature16961
  • Pan YH. Heading toward Artificial Intelligence 2.0. Engineering. 2016;2:409–413.10.1016/J.ENG.2016.04.018
  • Soman S, Suri M. Recent trends in neuromorphic engineering. Big Data Anal. 2016;1:145.10.1186/s41044-016-0013-1
  • Jo SH, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010;10:1297–1301.10.1021/nl904092 h
  • Rajan K. Materials informatics: the materials ‘gene’ and big data. Annu Rev Mater Res. 2015;45:153–169.10.1146/annurev-matsci-070214-021132
  • Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater. 2016;4:053208.10.1063/1.4946894