1,868
Views
19
CrossRef citations to date
0
Altmetric
Focus on Future leaders in structural materials research

Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model

, , &
Pages 857-868 | Received 31 May 2017, Accepted 09 Sep 2017, Published online: 30 Oct 2017

References

  • Manohar PA, Dunne DP, Chandra T, et al. Grain growth predictions in microalloyed steels. ISIJ Int. 1996;36(2):194–200. DOI:10.2355/isijinternational.36.194.
  • Uhm S, Moon J, Lee C, et al. Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: considering the effect of initial grain size on isothermal growth behavior. ISIJ Int. 2004;44(7):1230–1237. DOI:10.2355/isijinternational.44.1230.
  • Lee SJ, Lee YK. Prediction of austenite grain growth during austenitization of low alloy steels. Mater Design. 2008;29(9):1840–1844. DOI:10.1016/j.matdes.2008.03.009.
  • Kobayashi R. Modeling and numerical simulations of dendritic crystal growth. Physica D. 1993;63(3):410–423. DOI:10.1016/0167-2789(93)90120-P.
  • Steinbach I, Pezzolla F, Nestler B, et al. A phase field concept for multiphase systems. Physica D. 1996;94(3):135–147. DOI:10.1016/0167-2789(95)00298-7.
  • Steinbach I, Pezzolla F. A generalized field method for multiphase transformations using interface fields. Physica D. 1999;134(4):385–393. DOI:10.1016/S0167-2789(99)00129-3.
  • Kim SG, Kim DI, Kim WT, et al. Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys Rev E. 2006 Dec;74:061605. DOI:10.1103/PhysRevE.74.061605.
  • Boettinger WJ, Warren JA, Beckermann C, et al. Phase-field simulation of solidification. Ann Rev Mater Res. 2002;32(1):163–194. DOI:10.1146/annurev.matsci.32.101901.155803.
  • Chen LQ. Phase-field models for microstructure evolution. Ann Rev Mater Res. 2002;32(1):113–140. DOI:10.1146/annurev.matsci.32.112001.132041.
  • Ohno M, Yamaguchi T, Sato D, et al. Existence or nonexistence of thermal pinning effect in grain growth under temperature gradient. Comput Mater Sci. 2013;69:7–13. DOI:10.1016/j.commatsci.2012.11.017.
  • Reich S, Cotter C. Probabilistic forecasting and bayesian data assimilation. Cambridge: Cambridge University Press; 2015.
  • Ghil M, Malanotte-Rizzoli P. Data assimilation in meteorology and oceanography. Adv Geophys. 1991;33:141–266. DOI:10.1016/S0065-2687(08)60442-2.
  • Kalnay E. Atmospheric modeling, data assimilation and predictability. Cambridge: Cambridge University Press; 2003.
  • Tsuyuki T, Miyoshi T. Recent progress of data assimilation methods in meteorology. J Meteorol Soc Jpn Ser. 2007;II(85B):331–361. DOI:10.2151/jmsj.85B.331.
  • Ueno G, Higuchi T, Kagimoto T, et al. Application of the ensemble Kalman filter and smoother to a coupled atmosphere-ocean model. SOLA. 2007;3:5–8. DOI:10.2151/sola.2007-002.
  • Nagao H, Higuchi T, Miura S, et al. Time-series modeling of tide gauge records for monitoring of the crustal activities related to oceanic trench earthquakes around japan. Comput J. 2013;56(3):355–364. DOI:10.1093/comjnl/bxs139.
  • Kano M, Nagao H, Ishikawa D, et al. Seismic wavefield imaging based on the replica exchange Monte Carlo method. Geophys J Int. 2017;208(1):529. DOI:10.1093/gji/ggw410.
  • Maeda T, Obara K, Shinohara M, et al. Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys Res Lett. 2015;42(19):7923–7932. DOI:10.1002/2015GL065588.
  • Ito S, Nagao H, Yamanaka A, et al. Data assimilation for massive autonomous systems based on a second-order adjoint method. Phys Rev E. 2016 Oct;94:043307. DOI:10.1103/PhysRevE.94.043307.
  • Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput. 2000;10(3):197–208. DOI:10.1023/A:1008935410038.
  • Kitagawa G. Introduction to time series modeling. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Boca Raton, FL: CRC Press; 2010.
  • Houtekamer PL, Mitchell HL. Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev. 1998;126(3):796–811. DOI:10.1175/1520-0493(1998)126\lt0796:DAUAEK\gt2.0.CO;2.
  • Evensen G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 2003;53(4):343–367. DOI:10.1007/s10236-003-0036-9.
  • Le Dimet FX, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A. 1986;38A(2):97–110. DOI:10.1111/j.1600-0870.1986.tb00459.x.
  • Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. I: theory.Q J R Meteorol Soc. 1987;113(478):1311–1328. DOI:10.1002/qj.49711347812.
  • Wang Z, Navon I, Le Dimet F, et al. The second order adjoint analysis: theory and applications. Meteorol Atmos Phys. 1992;50(1–3):3–20. DOI:10.1007/BF01025501.
  • Wang Z, Droegemeier K, White L. The adjoint Newton algorithm for large-scale unconstrained optimization in meteorology applications. Comput Optim Appl. 1998;10(3):283–320. DOI:10.1023/A:1018321307393.
  • Le Dimet FX, Navon I, Daescu DN. Second-order information in data assimilation*. Mon Weather Rev. 2002;130(3):629–648. DOI:10.1175/1520-0493(2002)130\lt0629:SOIIDA\gt2.0.CO;2.
  • Byrd RH, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput. 1995;16(5):1190–1208. DOI:10.1137/0916069.