5,976
Views
67
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Recent progress in boron nanomaterials

ORCID Icon
Pages 780-804 | Received 31 May 2017, Accepted 12 Sep 2017, Published online: 16 Oct 2017

References

  • Oganov AR, Solozhenko VL. Boron: a hunt for superhard polymorphs. J Superhard Mater. 2009;31:285–291.10.3103/S1063457609050013
  • Albert B, Hillebrecht H. Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed. 2009;48:8640–8668.10.1002/anie.v48:46
  • Okada JT, Sit PH-L, Watanabe Y, et al. Visualizing the mixed bonding properties of liquid boron with high-resolution X-Ray compton scattering. Phys Rev Lett. 2015;114:177401.10.1103/PhysRevLett.114.177401
  • Emin D. Icosahedral boron-rich solids. Phys Today. 1987;40:55–62.10.1063/1.881112
  • Newkrik AE. Boron, metallo-boron compounds and boranes (Ed: R. M. Adams). New York: Interscience, John Wiley and Sons, Inc.; 1964.
  • Olempska Z, Badzian A, Pietrzak K, et al. Crystalline modifications of boron deposited on boron substrates. J Common Met. 1966;11:351–359.10.1016/0022-5088(66)90067-1
  • Komatsu S, Moriyoshi Y. Simultaneous growth of rhombohedral and amorphous boron films in a low pressure B2H6+H2+He plasma. J Cryst Growth. 1988;89:560–570.10.1016/0022-0248(88)90219-9
  • Komatsu S, Moriyoshi Y. Transition from thermal- to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B2H6 +He. J Appl Phys. 1989;66:1180–1184.10.1063/1.343459
  • Komatsu S, Moriyoshi Y. Growth of boron whiskers and ribbons in a low-pressure B2H6 + He + H2 plasma. J Cryst Growth. 1990;102:899–907.10.1016/0022-0248(90)90858-I
  • Komatsu S, Moriyoshi Y. Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B2H6 +He. J Appl Phys. 1989;66:466–469.10.1063/1.343853
  • Komatsu S, Moriyoshi Y. Growth forms of β-rhombohedral boron whiskers and platelets prepared in a low-pressure B2H6 + He plasma in terms of periodic bond chain method. J Cryst Growth. 1991;108:63–72.10.1016/0022-0248(91)90354-8
  • Komatsu S, Kasamatsu M, Yamada K, et al.  Effects of plasma and/or 193 nm excimer laser irradiation on the surface in chemical vapor deposition of boron films from B2H 6 +He. Appl Phys Lett. 1991;59:608–610.10.1063/1.105401
  • Boustani I. New quasi-planar surfaces of bare boron. Surf Sci. 1997;370:355–363.10.1016/S0039-6028(96)00969-7
  • Gindulytė A, Lipscomb WN, Massa L. Proposed boron nanotubes. Inorg Chem. 1998;37:6544–6545.10.1021/ic980559o
  • Boustani I, Quandt A, Hernández E, et al. New boron based nanostructured materials. J Chem Phys. 1999;110:3176–3185.10.1063/1.477976
  • Boustani I, Rubio A, Alonso JA. Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers. Chem Phys Lett. 1999;311:21–28.10.1016/S0009-2614(99)00767-8
  • Boustani I, Quandt A. Boron in ab initio calculations. Comput Mater Sci. 1998;11:132–137.10.1016/S0927-0256(97)00196-1
  • Boustani I, Quandt A. Nanotubules of bare boron clusters: Ab initio and density functional study. Europhys Lett EPL. 1997;39:527–532.10.1209/epl/i1997-00388-9
  • Boustani I. Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n=2–14). Phys Rev B. 1997;55:16426–16438.10.1103/PhysRevB.55.16426
  • Hosmane N. Boron science: new technologies and applications. Boca Raton, FL: CRC Press; 2011.10.1201/b11199
  • Kunstmann J, Quandt A. Constricted boron nanotubes. Chem Phys Lett. 2005;402:21–26.10.1016/j.cplett.2004.11.130
  • Quandt A, Boustani I. Boron nanotubes. Chem Phys Chem. 2005;6:2001–2008.10.1002/(ISSN)1439-7641
  • Kunstmann J, Quandt A. Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys Rev B. 2006;74:3176.10.1103/PhysRevB.74.035413
  • Alexandrova AN, Boldyrev AI, Zhai H-J, et al. All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord Chem Rev. 2006;250:2811–2866.10.1016/j.ccr.2006.03.032
  • Cabria I, López MJ, Alonso JA. Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets. Nanotechnology. 2006;17:778–785.10.1088/0957-4484/17/3/027
  • Tang H, Ismail-Beigi S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett. 2007;99:2906.10.1103/PhysRevLett.99.115501
  • Lau KC, Pandey R. Stability and electronic properties of atomistically-engineered 2D boron sheets. J Phys Chem C. 2007;111:2906–2912.10.1021/jp066719w
  • Singh AK, Sadrzadeh A, Yakobson BI. Probing properties of boron α-tubes by ab initio calculations. Nano Lett. 2008;8:1314–1317.10.1021/nl073295o
  • Lau KC, Pandey R. Thermodynamic stability of novel boron sheet configurations. J Phys Chem B. 2008;112:10217–10220.10.1021/jp8052357
  • Yang X, Ding Y, Ni J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B. 2008;041402(R).
  • Er S, de Wijs GA, Brocks G. DFT study of planar boron sheets: a new template for hydrogen storage. J Phys Chem C. 2009;113:18962–18967.10.1021/jp9077079
  • Tang H, Ismail-Beigi S. First-principles study of boron sheets and nanotubes. Phys Rev B. 2010;115412.
  • Saxena S, Tyson TA. Insights on the atomic and electronic structure of boron nanoribbons. Phys Rev Lett. 2010;245502.
  • Bezugly V, Kunstmann J, Grundkötter-Stock B, et al. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities. ACS Nano. 2011;5:4997–5005.10.1021/nn201099a
  • Zhang LZ, Yan QB, Du SX, et al. Boron sheet adsorbed on metal surfaces: structures and electronic properties. J Phys Chem C. 2012;116:18202–18206.10.1021/jp303616d
  • Penev ES, Bhowmick S, Sadrzadeh A, et al. Polymorphism of two-dimensional boron. Nano Lett. 2012;12:2441–2445.10.1021/nl3004754
  • Wu X, Dai J, Zhao Y, et al. Two-dimensional boron monolayer sheets. ACS Nano. 2012;6:7443–7453.10.1021/nn302696v
  • Amsler M, Botti S, Marques MAL, et al. Conducting boron sheets formed by the reconstruction of the α-boron (111) surface. Phys Rev Lett. 2013;111:49.10.1103/PhysRevLett.111.136101
  • Tian W-J, Bai H, Lu H-G, et al.  Planar D2 h B26H8, D2h B26H82+, and C 2hB26H6: building blocks of stable boron sheets with twin-hexagonal holes. J Clust Sci. 2013;24:1127–1137.10.1007/s10876-013-0603-2
  • Zhou X-F, Oganov AR, Shao X, et al. Unexpected reconstruction of the α-boron (111) surface. Phys Rev Lett. 2014;113:176101.10.1103/PhysRevLett.113.176101
  • Zhou X-F, Dong X, Oganov AR, et al. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys Rev Lett. 2014;112:085502.10.1103/PhysRevLett.112.085502
  • Xie S-Y, Li X-B, Tian WQ, et al. First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. Phys Rev B. 2014;035447.
  • Wang J, Zhao H-Y, Liu Y. Boron-double-ring sheet, fullerene, and nanotubes: potential hydrogen storage materials. Chem Phys Chem. 2014;15:3453–3459.10.1002/cphc.201402418
  • Li X-B, Xie S-Y, Zheng H, et al. Boron based two-dimensional crystals: theoretical design, realization proposal and applications. Nanoscale. 2015;7:18863–18871.10.1039/C5NR04359 J
  • Peng Q, Han L, Wen X, et al. Mechanical properties and stabilities of α-boron monolayers. Phys Chem Chem Phys. 2015;17:2160–2168.10.1039/C4CP04050C
  • Mannix AJ, Zhou X-F, Kiraly B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science. 2015;350:1513–1516.10.1126/science.aad1080
  • Feng B, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nat Chem. 2016;8:563–568.10.1038/nchem.2491
  • Zhang Z, Penev ES, Yakobson BI. Two-dimensional materials: polyphony in B flat. Nat Chem. 2016;8:525–527.10.1038/nchem.2521
  • Sun X, Liu X, Yin J, et al. Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 2017;27:1603300.10.1002/adfm.v27.19
  • Ma F, Jiao Y, Gao G, et al. Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition. Nano Lett. 2016;16:3022–3028.10.1021/acs.nanolett.5b05292
  • Zhang Y, Wu Z-F, Gao P-F, et al. Could Borophene be used as a promising anode material for high-performance lithium ion battery? ACS Appl Mater Interfaces. 2016;8:22175–22181.10.1021/acsami.6b05747
  • Zhang H, Li Y, Hou J, et al. Dirac state in the FeB2 Monolayer with Graphene-like boron sheet. Nano Lett. 2016;16:6124–6129.10.1021/acs.nanolett.6b02335
  • Mir SH, Chakraborty S, Jha PC, et al. Two-dimensional boron: lightest catalyst for hydrogen and oxygen evolution reaction. Appl Phys Lett. 2016;109:053903.10.1063/1.4960102
  • Zhou X-F, Oganov AR, Wang Z, et al. Two-dimensional magnetic boron. Phys Rev B. 2016;93:085406.10.1103/PhysRevB.93.085406
  • Peng B, Zhang H, Shao H, et al. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J Mater Chem C. 2016;4:3592–3598.10.1039/C6TC00115G
  • Jiang HR, Lu Z, Wu MC, et al. Borophene: a promising anode material offering high specific capacity and high rate capability for lithium-ion batteries. Nano Energy. 2016;23:97–104.10.1016/j.nanoen.2016.03.013
  • Liu LZ, Xiong SJ, Wu XL. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect. Appl Phys Lett. 2016;109:061601.10.1063/1.4960768
  • Pang Z, Qian X, Wei Y, et al. Super-stretchable borophene. EPL Europhys. Lett. 2016;116:36001.10.1209/0295-5075/116/36001
  • Massote DVP, Liang L, Kharche N, et al. Electronic, vibrational, Raman, and scanning tunneling microscopy signatures of two-dimensional boron nanomaterials. Phys Rev B. 2016;195416.
  • Penev ES, Kutana A, Yakobson BI. Can two-dimensional boron superconduct? Nano Lett. 2016;16:2522–2526.10.1021/acs.nanolett.6b00070
  • Zhao Y, Zeng S, Ni J. Phonon-mediated superconductivity in borophenes. Appl Phys Lett. 2016;108:242601.10.1063/1.4953775
  • Sun H, Li Q, Wan XG. First-principles study of thermal properties of borophene. Phys Chem Chem Phys. 2016;18:14927–14932.10.1039/C6CP02029A
  • Mortazavi B, Dianat A, Rahaman O, et al. Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. J Power Sources. 2016;329:456–461.10.1016/j.jpowsour.2016.08.109
  • Mortazavi B, Rahaman O, Dianat A, et al. Mechanical responses of borophene sheets: a first-principles study. Phys Chem Chem Phys. 2016;18:27405–27413.10.1039/C6CP03828 J
  • Liu M, Artyukhov VI, Yakobson BI. Mechanochemistry of one-dimensional boron: structural and electronic transitions. J Am Chem Soc. 2017;139:2111–2117.10.1021/jacs.6b12750
  • Zhang Z, Yang Y, Penev ES, et al. Elasticity, flexibility, and ideal strength of borophenes. Adv Funct Mater. 2017;27:1605059.10.1002/adfm.201605059
  • Cheng C, Sun J-T, Liu H, et al. Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping. 2D Mater. 2017;4:025032.10.1088/2053-1583/aa5e1b
  • Dewhurst RD, Claessen R, Braunschweig H. Two-dimensional, but not flat: an all-boron graphene with a corrugated structure. Angew Chem Int Ed. 2016;55:4866–4868.10.1002/anie.v55.16
  • Yuan J, Yu N, Xue K, et al. Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv. 2017;7:8654–8660.10.1039/C6RA28454 J
  • Giannopoulos GI. Mechanical behavior of planar borophenes: a molecular mechanics study. Comput Mater Sci. 2017;129:304–310.10.1016/j.commatsci.2016.12.045
  • Zhou Y-P, Jiang J-W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Sci Rep. 2017;7:45516.10.1038/srep45516
  • Cui Z-H, Jimenez-Izal E, Alexandrova AN. Prediction of two-dimensional phase of boron with anisotropic electric conductivity. J Phys Chem Lett. 2017;8:1224–1228.10.1021/acs.jpclett.7b00275
  • Karmodak N, Jemmis ED. The role of holes in borophenes: an ab initio study of their structure and stability with and without metal templates. Angew Chem Int Ed. 2017;56:10093–10097.
  • Xiao H, Cao W, Ouyang T, et al. Lattice thermal conductivity of borophene from first principle calculation. Sci Rep. 2017;7:45986.10.1038/srep45986
  • Wang H, Li Q, Gao Y, et al. Strain effects on borophene: ideal strength, negative Possion’s ratio and phonon instability. New J Phys. 2016;18:073016.10.1088/1367-2630/18/7/073016
  • Kulish VV. Surface reactivity and vacancy defects in single-layer borophene polymorphs. Phys Chem Chem Phys. 2017;19:11273–11281.10.1039/C7CP00637C
  • Liang P, Cao Y, Tai B, et al. Is borophene a suitable anode material for sodium ion battery? J Alloys Compd. 2017;704:152–159.10.1016/j.jallcom.2017.02.050
  • Alvarez-Quiceno JC, Miwa RH, Dalpian GM, et al. Oxidation of free-standing and supported borophene. 2D Mater. 2017;4:025025.10.1088/2053-1583/aa55b6
  • Feng B, Sugino O, Liu R-Y, et al. Dirac fermions in borophene. Phys Rev Lett. 2017;096401.
  • Tian J, Xu Z, Shen C, et al. One-dimensional boron nanostructures: prediction, synthesis, characterizations, and applications. Nanoscale. 2010;2:1375.10.1039/c0nr00051e
  • Xu J, Chang Y, Gan L, et al. Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv Sci. 2015;2:1500023.10.1002/advs.201500023
  • Zhai H-J, Wang L-S, Alexandrova AN, et al. Electronic structure and chemical bonding of B5− and B5 by photoelectron spectroscopy and ab initio calculations. J Chem Phys. 2002;117:7917–7924.10.1063/1.1511184
  • Alexandrova AN, Boldyrev AI, Zhai H-J, et al. Structure and bonding in B6- and B6: planarity and antiaromaticity. J Phys Chem A. 2003;107:1359–1369.10.1021/jp0268866
  • Zhai H-J, Kiran B, Li J, et al. Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity. Nat Mater. 2003;2:827–833.10.1038/nmat1012
  • Zhai H-J, Alexandrova AN, Birch KA, et al. Hepta- and Octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew Chem Int Ed. 2003;42:6004–6008.10.1002/(ISSN)1521-3773
  • Kiran B, Bulusu S, Zhai H-J, et al. Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc Natl Acad Sci. 2005;102:961–964.10.1073/pnas.0408132102
  • Pan L-L, Li J, Wang L-S. Low-lying isomers of the B9- boron cluster: the planar molecular wheel versus three-dimensional structures. J Chem Phys. 2008;129:024302.10.1063/1.2948405
  • Sergeeva AP, Averkiev BB, Zhai H-J, et al. All-boron analogues of aromatic hydrocarbons: B17− and B18−. J Chem Phys. 2011;134:224304.10.1063/1.3599452
  • Piazza ZA, Li W-L, Romanescu C, et al. A photoelectron spectroscopy and ab initio study of B21- : negatively charged boron clusters continue to be planar at 21. J Chem Phys. 2012;136:104310.10.1063/1.3692967
  • Li W-L, Romanescu C, Jian T, et al. Elongation of planar boron clusters by hydrogenation: boron analogues of polyenes. J Am Chem Soc. 2012;134:13228–13231.10.1021/ja305744a
  • Sergeeva AP, Piazza ZA, Romanescu C, et al. B22- and B23-: all-boron analogues of anthracene and phenanthrene. J Am Chem Soc. 2012;134:18065–18073.10.1021/ja307605t
  • Sergeeva AP, Popov IA, Piazza ZA, et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res. 2014;47:1349–1358.10.1021/ar400310 g
  • Li W-L, Zhao Y-F, Hu H-S, et al. [B30]- : a quasiplanar chiral boron cluster. Angew Chem Int Ed. 2014;53:5540–5545.10.1002/anie.v53.22
  • Piazza ZA, Hu H-S, Li W-L, et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat Commun. 2014;5:3113.
  • Zhai H-J, Zhao Y-F, Li W-L, et al. Observation of an all-boron fullerene. Nat Chem. 2014.
  • Chen Q, Wei G-F, Tian W-J, et al. Quasi-planar aromatic B36 and B36− clusters: all-boron analogues of coronene. Phys Chem Chem Phys. 2014;16:18282.10.1039/C4CP02032D
  • Sergeeva AP, Zubarev DY, Zhai H-J, et al. A photoelectron spectroscopic and theoretical study of B16− and B162− : an all-boron naphthalene. J Am Chem Soc. 2008;130:7244–7246.10.1021/ja802494z
  • Wang L-S. From planar boron clusters to borophenes and borospherenes. In: Jena P, Kandalam AK, editors. Proc. Vol. 10174 Int. Symp. Clust. Nanomater. 2016; 1017402.
  • Wu Y, Messer B, Yang P. Superconducting MgB2 nanowires. Adv Mater. 2001;13:1487–1489.10.1002/1521-4095(200110)13:19<>1.0.CO;2-S
  • Cao LM, Zhang Z, Sun LL, et al. Well-aligned boron nanowire arrays. Adv Mater. 2001;13:1701–1704.10.1002/(ISSN)1521-4095
  • Cao LM, Hahn K, Scheu C, et al. Template-catalyst-free growth of highly ordered boron nanowire arrays. Appl Phys Lett. 2002;80:4226–4228.10.1063/1.1483131
  • Cao LM, Hahn K, Wang YQ, et al. Featherlike boron nanowires arranged in large-scale arrays with multiple nanojunctions. Adv Mater. 2002;14:1294–1297.10.1002/1521-4095(20020916)14:18<1294::AID-ADMA1294>3.0.CO;2-#
  • Cao LM, Tian H, Zhang Z, et al. Nucleation and growth of feather-like boron nanowire nanojunctions. Nanotechnology. 2004;15:139–142.10.1088/0957-4484/15/1/027
  • Cao L, Liu J, Gao C, et al. Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter. 2002;14:11017–11021.10.1088/0953-8984/14/44/420
  • Wang YQ, Duan XF. Crystalline boron nanowires. Appl Phys Lett. 2003;82:272–274.10.1063/1.1536269
  • Gao Y, Xu Z, Liu R. Crystalline boron nanowires grown by magnetron sputtering. Mater Sci Eng A. 2006;434:53–57.
  • Yun SH, Dibos A, Lee HS, et al. Growth of boron nano-junctions. Appl Surf Sci. 2006;252:5587–5589.10.1016/j.apsusc.2005.12.013
  • Wu JZ, Yun SH, Dibos A, et al. Fabrication and characterization of boron-related nanowires. Microelectron J. 2003;34:463–470.10.1016/S0026-2692(03)00074-0
  • Yun SH, Wu JZ, Dibos A, et al. Self-assembled boron nanowire Y-junctions. Nano Lett. 2006;6:385–389.10.1021/nl052138r
  • Meng XM, Hu JQ, Jiang Y, et al. Boron nanowires synthesized by laser ablation at high temperature. Chem Phys Lett. 2003;370:825–828.10.1016/S0009-2614(03)00202-1
  • Yang Q, Sha J, Wang L, et al. Morphology and diameter controllable synthesis of boron nanowires. J Mater Sci. 2006;41:3547–3552.10.1007/s10853-005-5638-9
  • Otten CJ, Lourie OR, Yu M-F, et al. Crystalline boron nanowires. J Am Chem Soc. 2002;124:4564–4565.10.1021/ja017817s
  • Zhang Y, Ago H, Yumura M, et al. Synthesis of crystalline boron nanowires by laser ablation. Chem. Commun. 2002;2806–2807.
  • Zhang Y, Ago H, Yumura M, et al. Study of the growth of boron nanowires synthesized by laser ablation. Chem Phys Lett. 2004;385:177–183.10.1016/j.cplett.2003.12.052
  • Yang Q, Sha J, Xu J, et al. Aligned single crystal boron nanowires. Chem Phys Lett. 2003;379:87–90.10.1016/j.cplett.2003.08.019
  • Hao Z, Pingxin S, Xiaoyang H, et al. Influences of Si and Ni catalysts on the growth of boron nanowires. Rare Met Mater Eng. 2012;41:1717–1720.10.1016/S1875-5372(13)60012-0
  • Yun SH, Dibos A, Wu JZ, et al. Effect of quench on crystallinity and alignment of boron nanowires. Appl Phys Lett. 2004;84:2892–2894.10.1063/1.1705720
  • Yu M-F, Wagner GJ, Ruoff RS, et al. Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope. Phys Rev B. 2002;073406.
  • Ding W, Calabri L, Chen X, et al. Mechanics of crystalline boron nanowires. Compos Sci Technol. 2006;66:1112–1124.10.1016/j.compscitech.2005.11.030
  • Tian J, Cai J, Hui C, et al. Boron nanowires for flexible electronics. Appl Phys Lett. 2008;93:122105.10.1063/1.2976668
  • Lin C-H, Ni H, Wang X, et al. In situ nanomechanical characterization of single-crystalline boron nanowires by buckling. Small. 2010;6:927–931.10.1002/smll.v6:8
  • Liu F, Tang D-M, Gan H, et al. Individual boron nanowire has ultra-high specific young’s modulus and fracture strength as revealed by in situ transmission electron microscopy. ACS Nano. 2013;7:10112–10120.10.1021/nn404316a
  • Wang XJ, Tian JF, Yang TZ, et al. Single crystalline boron nanocones: electric transport and field emission properties. Adv Mater. 2007;19:4480–4485.10.1002/(ISSN)1521-4095
  • Liu F, Tian J, Bao L, et al. Fabrication of vertically aligned single-crystalline boron nanowire arrays and investigation of their field-emission behavior. Adv Mater. 2008;20:2609–2615.10.1002/adma.v20:13
  • Tian J, Hui C, Bao L, et al. Patterned boron nanowires and field emission properties. Appl Phys Lett. 2009;94:083101.10.1063/1.3080211
  • Liu F, Liang WJ, Su ZJ, et al. Fabrication and field emission properties of boron nanowire bundles. Ultramicroscopy. 2009;109:447–450.10.1016/j.ultramic.2008.12.010
  • Liu F, Su Z, Li L, et al. Effect of contact mode on the electrical transport and field-emission performance of individual boron nanowires. Adv Funct Mater. 2010;20:1994–2003.10.1002/adfm.v20:12
  • Zhang CD, Cai JM, Gao M, et al. Local field emission of electrons from an individual boron nanowire at nanometer electrode separation. Appl Surf Sci. 2012;258:2149–2152.10.1016/j.apsusc.2011.03.048
  • Liu F, Gan H, Tang D-M, et al. Growth of large-scale boron nanowire patterns with identical base-up mode and in situ field emission studies of individual boron nanowire. Small. 2014;10:685–693.10.1002/smll.201301948
  • Ciuparu D, Klie RF, Zhu Y, et al. Synthesis of pure boron single-wall nanotubes. J Phys Chem B. 2004;108:3967–3969.10.1021/jp049301b
  • Liu F, Shen C, Su Z, et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J Mater Chem. 2010;20:2197.10.1039/b919260c
  • Wang Z, Shimizu Y, Sasaki T, et al. Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation. Chem Phys Lett. 2003;368:663–667.10.1016/S0009-2614(02)01964-4
  • Kirihara K, Wang Z, Kawaguchi K, et al. Temperature dependence of electrical conductance in single-crystalline boron nanobelts. Appl Phys Lett. 2005;86:212101.10.1063/1.1935036
  • Kirihara K, Wang Z, Kawaguchi K, et al. Electrical transport of tetragonal boron nanobelts. J Vac Sci Technol B Microelectron Nanometer Struct. 2005;23:2510.10.1116/1.2131870
  • Kirihara K, Hyodo H, Fujihisa H, et al. Mg-doping experiment and electrical transport measurement of boron nanobelts. J Solid State Chem. 2006;179:2799–2804.10.1016/j.jssc.2006.01.015
  • Li WT, Boswell R, Fitz Gerald JD. Boron nanobelts grown under intensive ion bombardment. J Vac Sci Technol B Microelectron Nanometer Struct. 2008;26:L7.10.1116/1.2827498
  • Ni H, Li XD. Synthesis, structural and mechanical characterization of amorphous and crystalline boron nanobelts. J Nano Res. 2008;1:10–22.10.4028/www.scientific.net/JNanoR.1
  • Xu TT, Zheng J-G, Wu, et al. Crystalline boron nanoribbons: synthesis and characterization. Nano Lett. 2004;4:963–968.10.1021/nl0498785
  • Jash P, Trenary M. Synthesis of crystalline boron nanoribbons and calcium hexaboride nanowires by low pressure chemical vapor deposition. J Phys Conf Ser. 2009;176:012011.10.1088/1742-6596/176/1/012011
  • Zhong Q, Kong L, Gou J, et al. Synthesis of borophene nanoribbons on Ag(110) surface. Phys Rev Mater. 2017;1:02101(R).
  • Stankovich S, Dikin DA, Dommett GHB, et al. Graphene-based composite materials. Nature. 2006;442:282–286.10.1038/nature04969
  • Osada M, Sasaki T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater. 2012;24:210–228.10.1002/adma.201103241
  • Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev. 2013;113:3766–3798.10.1021/cr300263a
  • Butler SZ, Hollen SM, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7:2898–2926.10.1021/nn400280c
  • Tan C, Cao X, Wu X-J, et al. Recent advances in Ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225–6331.10.1021/acs.chemrev.6b00558
  • Kong X, Liu Q, Zhang C, et al. Elemental two-dimensional nanosheets beyond graphene. Chem Soc Rev. 2017;46:2127–2157.10.1039/C6CS00937A
  • Li W-L, Chen Q, Tian W-J, et al. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene. J Am Chem Soc. 2014;136:12257–12260.10.1021/ja507235s
  • Li W-L, Pal R, Piazza ZA, et al. B 2B27−: appearance of the smallest planar boron cluster containing a hexagonal vacancy. J Chem Phys. 2015;142:204305.10.1063/1.4921732
  • Patel RB, Chou T, Iqbal Z. Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater. 2015;2015:1–7.10.1155/2015/243925
  • Tai G, Hu T, Zhou Y, et al. Synthesis of atomically thin boron films on copper foils. Angew Chem Int Ed. 2015;54:15473–15477.10.1002/anie.201509285
  • Tsai H-S, Hsiao C-H, Lin Y-P, et al. Fabrication of multilayer borophene on insulator structure. Small. 2016;12:5251–5255.10.1002/smll.v12.38
  • Zhang Z, Mannix AJ, Hu Z, et al. Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 2016;16:6622–6627.10.1021/acs.nanolett.6b03349
  • Zhong Q, Zhang J, Cheng P, et al. Metastable phases of 2D boron sheets on Ag(1 1 1). J Phys Condens Matter. 2017;29:095002.10.1088/1361-648X/aa5165
  • Mannix AJ, Kiraly B, Hersam MC, et al. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem. 2017;1:0014.10.1038/s41570-016-0014
  • Liu X, Wei Z, Balla I, et al. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci Adv. 2017;3:e1602356.10.1126/sciadv.1602356
  • Zhang Z, Yang Y, Gao G, et al. Two-dimensional boron monolayers mediated by metal substrates. Angew Chem. 2015;127:13214–13218.10.1002/ange.201505425
  • Feng B, Zhang J, Liu R-Y, et al. Direct evidence of metallic bands in a monolayer boron sheet. Phys Rev B. 2016;94:041408(R).10.1103/PhysRevB.94.041408
  • Oganov AR, Chen J, Gatti C, et al. Ionic high-pressure form of elemental boron. Nature. 2009;457:863–867.10.1038/nature07736
  • Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499:419–425.10.1038/nature12385
  • Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol. 2015;10:227–231.10.1038/nnano.2014.325
  • Coleman JN, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331:568–571.10.1126/science.1194975
  • Nicolosi V, Chhowalla M, Kanatzidis MG, et al. Liquid exfoliation of layered materials. Science. 2013;340:1226419.10.1126/science.1226419
  • Geng F, Ma R, Ebina Y, et al. Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets. J Am Chem Soc. 2014;136:5491–5500.10.1021/ja501587y
  • Tao H, Zhang Y, Gao Y, et al. Scalable exfoliation and dispersion of two-dimensional materials – an update. Phys Chem Chem Phys. 2017;19:921–960.10.1039/C6CP06813H
  • Das SK, Bedar A, Kannan A, et al. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci Rep. 2015;5:263.10.1038/srep10522
  • Nishino H, Fujita T, Yamamoto A, et al. Formation mechanism of boron-based nanosheet through the reaction of MgB2 with water. J Phys Chem C. 2017;121:10587–10593.10.1021/acs.jpcc.7b02348
  • Nishino H, Fujita T, Cuong NT, et al. Formation and Characterization of Hydrogen Boride Sheets Derived from MgB2 by Cation Exchange J Am Chem Soc. 2017;139:13761–13769.
  • Jiao Y, Ma F, Bell J, et al. Two-dimensional boron hydride sheets: high stability, massless dirac fermions, and excellent mechanical properties. Angew Chem. 2016;128:10448–10451.10.1002/ange.201604369
  • Abtew TA, Shih B, Dev P, et al. Prediction of a multicenter-bonded solid boron hydride for hydrogen storage. Phys Rev B. 2011;83:094108.10.1103/PhysRevB.83.094108