1,342
Views
1
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase

, , , , &
Pages 870-876 | Received 17 Jun 2017, Accepted 12 Sep 2017, Published online: 01 Nov 2017

References

  • Prinske C, Jaroschinsky M, Sawers RG. Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. Microbiology. 2013;159:1179–1189. 10.1099/mic.0.066142-0
  • Forzi L, Sawers RG. Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals. 2007;20:565–578. 10.1007/s10534-006-9048-5
  • Bagramyan K, Trchounian A. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Moscow). 2003;68:1159–1170. 10.1023/B:BIRY.0000009129.18714.a4
  • Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev. 2014;114:3963–4038.10.1021/cr400443z
  • Gonzalez PJ, Rivas MG, Mota CS, et al. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev. 2013;257:315–331.10.1016/j.ccr.2012.05.020
  • Special issue on Hydrogenases. Eur J Inorg Chem. 2011;2011:915–1171.
  • Special issue on Renewable energy. Chem Soc Rev. 2009;38:1–300.
  • Tard C, Pickett CJ. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev. 2009;109:2245–2274. 10.1021/cr800542q
  • Special issue on Hydrogen. Chem Rev. 2007;107:3900–4435.
  • Nguyen NT, Mori Y, Matsumoto T, et al. A [NiFe]hydrogenase model that catalyses the release of hydrogen from formic acid. Chem Commun. 2014;50:13385–13387.10.1039/C4CC05911E
  • Glasoe PK, Long FA. Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem. 1960;64:188–190. 10.1021/j100830a521
  • Mikkelsen K, Nielsen SO. Acidity measurements with the glass electrode in H2O-D2O mixtures. J Phys Chem. 1960;64:632–637. 10.1021/j100834a026
  • Morris DJ, Clarkson GJ, Wills M. Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics. 2009;28:4133–4140. 10.1021/om900099u
  • Czaun M, Goeppert A, Kothandarman J, et al. Formic acid as a hydrogen storage medium: ruthenium-catalyzed generation of hydrogen from formic acid in emulsions. ACS Catal. 2014;4:311–320. 10.1021/cs4007974
  • Robertson A, Matsumoto T, Ogo S. The development of aqueous transfer hydrogenation catalysts. Dalton Trans. 2011;40:10304–10310. 10.1039/c1dt10544b
  • Churchill MR, Janik TS, Duggan TP, et al. Synthesis, characterization, and crystal structure of (μ-H)2Ru3(μ3-η2-CHC(O)OCH3)(CO)9, a stabilized intermediate in the reductive elimination of hydrocarbons from trimetallic clusters. Organometallics. 1987;6:799–805. 10.1021/om00147a019
  • Gao Y, Kuncheria JK, Jenkins HA, et al. The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst. J Chem Soc Dalton Trans. 2000;3212–3217.
  • Pelayo-Vázquez JB, González FJ, Leyva MA, et al. A ruthenium carbonyl cluster containing a hydroquinone ligand: A layered structure with a polymetallic species. Structure and electrochemical characterization. J Organomet Chem. 2012;716:289–293. 10.1016/j.jorganchem.2012.06.030
  • Hossain MJ, Rajbangshi S, Khan MMM, et al. Experimental and computational studies on the reaction of silanes with the diphosphine-bridged triruthenium clusters Ru3(CO)10(μ-dppf), Ru3(CO)10(μ-dppm) and Ru3(CO)9{μ3-PPhCH2PPh(C6H4)}. J Organomet Chem. 2014;767:185–195. 10.1016/j.jorganchem.2014.05.040
  • Mayer T, Böttcher H-C. Protonation of metal–metal bonds in coordinatively unsaturated diruthenium cores. Polyhedron. 2013;50:507–511. 10.1016/j.poly.2012.11.049
  • Siedle AR, Newmark RA, Pignolet LH. Organometallic chemistry of fluorocarbon acids. synthesis, structure, and solvolysis of a sulfinate-bridged diruthenium dihydride cluster, [(Ph3P)4Ru2(μ-H)2(μ-CF3SO2)(CO)2]HC(SO2CF3)2. Inorg Chem. 1986;25:1345–1351. 10.1021/ic00229a010
  • Geetharani K, Bose SK, Sahoo S, et al. Cluster expansion reactions of group 6 and 8 metallaboranes using transition metal carbonyl compounds of groups 7–9. Inorg Chem. 2011;50:5824–5832. 10.1021/ic200802c
  • Nagashima H, Fukahori T, Aoki K, et al. Partial hydrogenation of acenaphthylene on the face of a triruthenium cluster: formation of (μ2:η1:η5-C12H10)Ru3H2(CO)7 from (μ3:η2:η3:η5-C12H8)Ru3(CO)7. J Am Chem Soc. 1993;115:10430–10431. 10.1021/ja00075a097
  • van Buijtenen J, Meuldijk J, Vekemans JAJM, et al. Dinuclear ruthenium complexes bearing dicarboxylate and phosphine ligands. Acceptorless catalytic dehydrogenation of 1-phenylethanol. Organometallics. 2006;25:873–881. 10.1021/om050789s
  • Ogo S. Electrons from hydrogen. Chem Commun. 2009;3317–3325.