1,311
Views
7
CrossRef citations to date
0
Altmetric
New topics/Others

Laser synthesized TiO2-based nanoparticles and their efficiency in the photocatalytic degradation of linear carboxylic acids

, , , , , , , & show all
Pages 805-815 | Received 22 Jun 2017, Accepted 12 Sep 2017, Published online: 25 Oct 2017

References

  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125(1):331–349. 10.1016/j.apcatb.2012.05.036
  • Lan Y, Lu Y, Ren Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy. 2013;2(5):1031–1045.
  • Asahi R, Morikawa T, Irie H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. 2014;114;114(19):9824–9852. 10.1021/cr5000738
  • Chatterjee D, Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C Photochem Rev. 2005;6(2-3):186–205. 10.1016/j.jphotochemrev.2005.09.001
  • Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res. 2013;52:3581–3599. 10.1021/ie303468t
  • Kang QM, Yuan BL, Xu JG, et al. Synthesis, characterization and photocatalytic performance of TiO2 codoped with bismuth and nitrogen. Catal Lett. 2011;141(9):1371–1377. 10.1007/s10562-011-0629-8
  • Liu H, Dong X, Li G, et al. Synthesis of C, Ag co-modified TiO2 photocatalyst and its application in waste water purification. Appl Surf Sci. 2013;271:276–283. 10.1016/j.apsusc.2013.01.181
  • Gomathi Devi L, Kavitha R. Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms. RSC Adv. 2014;4(54):28265–28299. 10.1039/C4RA03291H
  • Mahy JG, Lambert SD, Léonard GL, et al. Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. Journal Photochem Photobiol A Chem. 2016;329:189–202. 10.1016/j.jphotochem.2016.06.029
  • Gnanasekaran L, Hemamalini R, Saravanan R, et al. Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J Mol Liq. 2016;223:652–659. 10.1016/j.molliq.2016.08.105
  • Jafari S, Mohammadi MR, Madaah Hosseini HRM. Impact of morphology and nitrogen and carbon codoping on photocatalytic activity of TiO2 as environmental catalysts. Ind Eng Chem Res. 2016;55:12205–12212. 10.1021/acs.iecr.6b03053
  • Zaleska A. Doped-TiO2: a review. Recent Patents Eng. 2008;2(3):157–164. 10.2174/187221208786306289
  • Grabowska E, Marchelek M, Klimczuk T, et al. Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light. J Mol Catal A Chem. 2016;423:191–206. 10.1016/j.molcata.2016.06.021
  • Méndez-Medrano MG, Kowalska E, Lehoux A, et al. Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J Phys Chem C. 2016;120(43):25010–25022. 10.1021/acs.jpcc.6b06854
  • Bouhadoun S, Guillard C, Dapozze F, et al. One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Appl Catal B Environ. 2015;174-175:367–375. 10.1016/j.apcatb.2015.03.022
  • Livraghi S, Paganini MC, Giamello E, et al. Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc. 2006 Dec 13;128(49):15666–15671. 10.1021/ja064164c
  • Livraghi S, Votta A, Paganini MC, et al. The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chem Commun. 2005;4:498–500. 10.1039/b413548b
  • Di Valentin C, Finazzi E, Pacchioni G, et al. N-doped TiO2: theory and experiment. Chem Phys. 2007;339(1-3):44–56. 10.1016/j.chemphys.2007.07.020
  • Hai Z, El Kolli N, Uribe DB, et al. Modification of TiO2 by bimetallic Au–Cu nanoparticles for wastewater treatment. J Mater Chem A. 2013;1(36):10829. 10.1039/c3ta11684 k
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Am Chem Soc. 1995;95:69–96.
  • Colbeau-Justin C, Kunst M, Huguenin D. Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. J Mater Sci. 2003;38(11):2429–2437. 10.1023/A:1023905102094
  • Tahiri Alaoui O, Herissan A, Le Quoc C, et al. Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis. J Photochem Photobiol A. 2012;242:34–43. 10.1016/j.jphotochem.2012.05.030
  • Fonash SJ. Solar cell device physics. New York, NY: Academy Press; 1981.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–271. 10.1126/science.1061051
  • Yang G, Jiang Z, Shi H, et al. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem. 2010;20(25):5301–5309. 10.1039/c0jm00376j
  • Duta L, Popescu C, Popescu A, et al. Nitrogen-doped and gold-loaded TiO2 photocatalysts synthesized by sequential reactive pulsed laser deposition. Appl Phys A. 2014;117(1): 97–101.
  • Gazsi A, Schubert G, Pusztai P, et al. Photocatalytic decomposition of formic acid and methyl formate on TiO2 doped with N and promoted with Au. Production of H2. Int J Hydrogen Energy. 2013;38(19):7756–7766. 10.1016/j.ijhydene.2013.04.097
  • Amadelli R, Samiolo L, Borsa M, et al. N-TiO2 Photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation. Catal Today. 2013;206(2):19–25. 10.1016/j.cattod.2011.11.031
  • Wang J, Tafen DN, Lewis JP, et al. Origin of photocatalytic activity of Nitrogen-doped TiO2 nanobelts. J Am Chem Soc. 2009;131(34):12290–12297. 10.1021/ja903781 h
  • Asahi R, Morikawa T. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem Phys. 2007;339(1-3):57–63. 10.1016/j.chemphys.2007.07.041
  • Okumura M, Coronado JM, Soria J, et al. EPR Study of CO and O2 interaction with supported Au catalysts. J Catal. 2001;203(1):168–174. 10.1006/jcat.2001.3307
  • Kumar CP, Gopal NO, Wang TC. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J Phys Chem B. 2006;110:5223–5229. 10.1021/jp057053t
  • Li Y, Hwang DS, Lee NH, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem Phys Lett. 2005;404(1-3):25–29. 10.1016/j.cplett.2005.01.062
  • Livraghi S, Paganini MC, Chiesa M, et al. Trapped molecular species in N-doped TiO2. Res Chem Intermed. 2007;33(8):739–747. 10.1163/156856707782169462
  • Livraghi S, Chierotti MR, Giamello E, et al. Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: a multi-technique characterization of differently prepared materials. J Phys Chem C. 2008;112(44):17244–17252. 10.1021/jp803806s
  • Di Valentin C, Pacchioni G, Selloni A, et al. Characterization of paramagnetic species in N-Doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B. 2005;109(23):11414–11419.
  • Barolo G, Livraghi S, Chiesa M, et al. Mechanism of the photoactivity under visible light of N-doped titanium dioxide. charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J Phys Chem C. 2012;116(39):20887–20894. 10.1021/jp306123d
  • Konstantinova EA, Kokorin AI, Lips K, et al. EPR study of the illumination effect on properties of paramagnetic centers in nitrogen-doped TiO2 active in visible light photocatalysis. Appl Magn Reson. 2009;35(3):421–427. 10.1007/s00723-009-0173-5
  • Howe RF, Gratzel M. EPR observation of trapped electron in colloidal TiO2. J Phys Chem. 1985;89(21):4495–4499. 10.1021/j100267a018
  • Meichtry JM, Colbeau-Justin C, Custo G, et al. TiO2-photocatalytic transformation of Cr (VI) in the presence of EDTA : comparison of different commercial photocatalysts and studies by time resolved microwave conductivity. Appl Catal B Environ. 2014;144:189–195. 10.1016/j.apcatb.2013.06.032
  • Boujday S, Wünsch F, Portes P, et al. Photocatalytic and electronic properties of TiO2 powders elaborated by sol–gel route and supercritical drying. Sol Energy Mater Sol Cells. 2004;83(4):421–433. 10.1016/j.solmat.2004.02.035
  • Emilio CA, Litter MI, Kunst M, et al. Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics. Langmuir. 2006;22(8):3606–3613. 10.1021/la051962s
  • Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 2011;115(46):13211–13241. 10.1021/jp204364a
  • Serpone N, Martin J, Horikoshi S, et al. Photocatalyzed oxidation and mineralization of C1–C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions—kinetics, identification of intermediates and quantum yields. J Photochem Photobiol A Chem. 2005;169(3):235–251. 10.1016/j.jphotochem.2004.07.001
  • Buxton GV, Greenstock CL, Helman WP, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O-) in aqueous-solution. J Phys Chem. 1988;17: 513–886.
  • Kaise M, Nagai H, Tokuhashi K, et al. Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media. Langmuir. 1994;10(5):1345–1347. 10.1021/la00017a005
  • Nosaka Y, Koenuma K, Ushida K, et al. Reaction mechanism of the decomposition of acetic acid on illuminated TiO2 powder studied by means of in situ electron spin resonance measurements. Langmuir. 1996;12:736–738. 10.1021/la9509615
  • Gandhi V, Mishra M, Joshi PA. Titanium dioxide catalyzed photocatalytic degradation of carboxylic acids from waste water: a review. Mater Sci Forum. 2012;712:175–189. 10.4028/www.scientific.net/MSF.712
  • Shkrob IA, Chemerisov SD. Light induced fragmentation of polyfunctional carboxylated compounds on hydrated metal oxide particles: from simple organic acids to peptides. J Phys Chem C. 2009;113(39):17138–17150. 10.1021/jp906250w
  • Sakata T, Kawai T, Hashimoto K. Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction. J Phys Chem. 1984;88(11):2344–2350. 10.1021/j150655a032