4,222
Views
28
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Membrane thinning for efficient CO2 capture

ORCID Icon & ORCID Icon
Pages 816-827 | Received 18 Aug 2017, Accepted 27 Sep 2017, Published online: 30 Oct 2017

References

  • Stern N. Stern review on the economics of climate change. Cambridge: Cambridge University Press; 2006.
  • http://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record
  • Rogelj J, den Elzen M, Höhne N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature. 2016;534(7609):631–639.10.1038/nature18307
  • ZEP (The Zero Emissions Platform). The Costs of CO2 Capture, Transport and Storage;2011. p.50. Available at http://www.zeroemissionsplatform.eu/library/publication/165-zep-cost-report-summary.html
  • Bukhteeva O, Neal P, Allinson G. Optimisation economics for CO2 capture and storage in central Queensland (Australia). Energy Proced. 2009;1(1):3969–3976.10.1016/j.egypro.2009.02.201
  • D’Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chemie Int Ed. 2010;49(35):6058–6082.10.1002/anie.201000431
  • Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013–A review. ACS Appl Mater Interfaces. 2015;7(4):2137–2148.10.1021/am507465f
  • Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2(9):796–854.10.1002/cssc.v2:9
  • Basic research needs for carbon capture: beyond 2020. US Department of Energy Basic Energy Sciences Workshop for Carbon Capture; 2010. Available online at https://science.energy.gov/~/media/bes/pdf/reports/files/Basic_Research_Needs_for_Carbon_Capture_rpt.pdf
  • Merkel TC, Lin H, Wei X, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Memb Sci. 2010;359(1–2):126–139.10.1016/j.memsci.2009.10.041
  • Park HB, Kamcev J, Robeson LM, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science. 2017;356:1138–1148.
  • Sanders DF, Smith ZP, Guo R, et al. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer. 2013;54(18):4729–4761.10.1016/j.polymer.2013.05.075
  • Yave W, Car A, Wind J, et al. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology. 2010;21(39):395301.10.1088/0957-4484/21/39/395301
  • Vendamme R, Onoue SY, Nakao A, et al. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat Mater. 2006;5(6):494–501.10.1038/nmat1655
  • Watanabe H, Kunitake T. A large, free-standing, 20 nm thick nanomembrane based on an epoxy resin Adv. Mater. 2007;19(7):909–912.
  • Watanabe H, Muto E, Ohzono T, et al. Giant nanomembrane of covalently-hybridized epoxy resin and silica. J Mater Chem. 2009;19(16):2425–2431.10.1039/b819213 h
  • Mizutani N, Korposh S, Selyanchyn R, et al. One-step fabrication of polystyrene–TiO2 nanosandwich film by phase separation. Chem Lett. 2012;41(5):552–554.10.1246/cl.2012.552
  • Markutsya S, Jiang C, Pikus Y, et al. Freely suspended layer-by-layer nanomembranes: testing micromechanical properties. Adv Funct Mater. 2005;15(5):771–780.10.1002/(ISSN)1616-3028
  • Kulkarni DD, Choi I, Singamaneni SS, et al. Graphene oxide - polyelectrolyte nanomembranes. ACS Nano. 2010;4(8):4667–4676.10.1021/nn101204d
  • Nardin C, Winterhalter M, Meier W. Giant free-standing ABA triblock copolymer membranes. Langmuir. 2000;16(20):7708–7712.10.1021/la000204t
  • Henis JMS, Tripodi MK. Composite hollow fiber membranes for gas separation: the resistance model approach. J Memb Sci. 1981;8(3):233–246.10.1016/S0376-7388(00)82312-1
  • Dai Z, Ansaloni L, Deng L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energy Environ. 2016;1(2):102–128.10.1016/j.gee.2016.08.001
  • Lin H, He Z, Sun Z, et al. CO2-selective membranes for hydrogen production and CO2 capture - part I: membrane development. J Memb Sci. 2014;457:149–161.10.1016/j.memsci.2014.01.020
  • Yave W, Huth H, Car A, et al. Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: ‘a super membrane for CO2-capture’. Energy Environ Sci. 2011;4(11):4656–4661.10.1039/c1ee02139 g
  • Fu Q, Kim J, Gurr PA, et al. A novel cross-linked nano-coating for carbon dioxide capture. Energy Environ Sci. 2016;9(2):434–440.10.1039/C5EE02433A
  • Kim J, Fu Q, Scofield JMP, et al. Ultra-thin film composite mixed matrix membranes incorporating iron(III)–dopamine nanoparticles for CO2 separation. Nanoscale. 2016;8(15):8312–8323.10.1039/C5NR08840B
  • Kim J, Fu Q, Xie K, et al. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. J Memb Sci. 2016;515:54–62.10.1016/j.memsci.2016.05.029
  • Rowe BW, Freeman BD, Paul DR. Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer. 2009;50(23):5565–5575.10.1016/j.polymer.2009.09.037
  • Tiwari RR, Smith ZP, Lin H, et al. Gas permeation in thin films of ‘high free-volume’ glassy perfluoropolymers: part I. Physical Aging Polym. 2014;55(22):5788–5800.
  • Tiwari RR, Jin J, Freeman BD, et al. Physical aging, CO2 sorption and plasticization in thin films of Polymer with Intrinsic Microporosity (PIM-1) physical aging, CO2 sorption and plasticization in thin films of Polymer with Intrinsic Microporosity (PIM-1). J Memb Sci. 2017;537:362–371.10.1016/j.memsci.2017.04.069
  • Lau CH, Nguyen PT, Hill MR, et al. Ending aging in super glassy polymer membranes. Angew Chemie Int Ed. 2014;53(21):5322–5326.10.1002/anie.v53.21
  • Cheng XQ, Konstas K, Doherty CM, et al. Hyper-cross-linked additives that impede aging and enhance permeability in thin polyacetylene films for organic solvent nanofiltration. ACS Appl Mater Interfaces. 2017;9(16):14401–14408.10.1021/acsami.7b02295
  • McCaig M, Paul DR, Barlow J. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging - part I. Exp Obs Polym. 2000;41(2):629–637.
  • Firpo G, Angeli E, Repetto L, et al. Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J Memb Sci. 2015;481:1–8.10.1016/j.memsci.2014.12.043
  • Islam MA, Buschatz H. Assessment of thickness-dependent gas permeability of polymer membranes Indian. J Chem Techn. 2005;12(1):88–92.
  • Frieberg BR, Page KA, Graybill JR, et al. Mechanical response of thermally annealed nafion thin films. ACS Appl Mater Interfaces. 2016;8(48):33240–33249.10.1021/acsami.6b12423
  • Paul DK, Karan K, Docoslis A, et al. Characteristics of self-assembled ultrathin nafion films. Macromolecules. 2013;46(9):3461–3475.10.1021/ma4002319
  • Efremov MY, Kiyanova AV, Last J, et al. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum. Phys Rev E. 2012;86(2):1–11.
  • Kim JH, Jang J, Zin WC. Thickness dependence of the glass transition temperature in thin polymer films. Langmuir. 2001;17(17):2703–2710.10.1021/la001125 k
  • Matteucci S, Yampolskii Y, Freeman BD, et al. Transport of Gases and Vapors in Glassy and Rubbery Polymers. In: Yampolskii I, Pinnau I, Freeman BD, editors. Material science of membranes for gas and vapor separation. England: John Wiley & Sons Ltd, Chichester; 2006. p.16.
  • Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev. 2013;113:3766–3798.10.1021/cr300263a
  • Kim HW, Yoon HW, Yoon S, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science. 2013;342(6154):91–95.10.1126/science.1236098
  • Ai M, Shishatskiy S, Wind J, et al. Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation. Adv Mater. 2014;26(21):3421–3426.10.1002/adma.v26.21
  • Kattula M, Ponnuru K, Zhu L, et al. Designing ultrathin film composite membranes: the impact of a gutter layer. Sci Rep. 2015;5:15016.10.1038/srep15016
  • Pinnau I, Wijmans JG, Blume I, et al. Gas permeation through composite membranes. J Memb Sci. 1988;37(1):81–88.10.1016/S0376-7388(00)85070-X
  • Ramon GZ, Wong MCY, Hoek EMV. Transport through composite membrane, part 1: Is there an optimal support membrane? J Memb Sci. 2012;415–416:298–305.10.1016/j.memsci.2012.05.013
  • Watanabe H, Vendamme R, Kunitake T. Development of fabrication of giant nanomembranes. B Chem Soc Jpn. 2007;80(3):433–440.10.1246/bcsj.80.433
  • Cheng W, Campolongo MJ, Tan SJ, et al. Freestanding ultrathin nano-membranes via self-assembly. Nano Today. 2009;4(6):482–493.10.1016/j.nantod.2009.10.005
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312–1314.10.1126/science.1171245
  • Li XS, Zhu YW, Cai WW, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9(12):4359–4363.10.1021/nl902623y
  • Li X, Magnuson CW, Venugopal A, et al. Large-area graphene single crystals grown by low-pressure. J Am Chem Soc. 2011;133(9):2816–2819.10.1021/ja109793s
  • Yoo BM, Shin JE, Lee HD, et al. Graphene and graphene oxide membranes for gas separation applications. Curr Opin Chem Eng. 2017;16:39–47.10.1016/j.coche.2017.04.004
  • Bunch JS, Verbridge SS, Alden JS, et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008;8(8):2458–2462.10.1021/nl801457b
  • Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science. 2013;342(6154):95–98.10.1126/science.1236686
  • Hashizume M, Kunitake T. Preparation of self-supporting ultrathin films of Titania by spin coating. Langmuir. 2003;19:10172–10178.10.1021/la035079a
  • Mallwitz F, Goedel WA. Physically cross-linked ultrathin elastomeric membranes. Angew Chemie - Int Ed. 2001;40(14):2645–2647.10.1002/(ISSN)1521-3773
  • Jakšić Z, Matovic J. Functionalization of artificial freestanding composite nanomembranes. Mater (Basel). 2010;3(1):165–200.
  • Fujikawa S, Muto E, Kunitake T. Nanochannel design by molecular imprinting on a free-standing ultrathin Titania membrane. Langmuir. 2009;25(19):11563–11568.10.1021/la9014916
  • Selyanchyn R, Staykov A, Fujikawa S. Incorporation of CO2 philic moieties into a TiO2 nanomembrane for preferential CO2 separation. RSC Adv. 2016;6(91):88664–88667.10.1039/C6RA18419G
  • Aoki Y, Habasaki H, Kunitake T. Size-scaling of proton conductivity in amorphous aluminosilicate acid thin films. J Am Chem Soc. 2009;131(40):14399–14406.10.1021/ja904627 h
  • Fujikawa S, Ariyoshi M, Shigyo E, et al. Preferential CO2 separation over nitrogen by a free-standing and nanometer-thick membrane. Eng Procedia. 2017;114:608–612.10.1016/j.egypro.2017.03.1907
  • Kang E, Ryoo J, Jeong GS, et al. Large-scale, ultrapliable, and free-standing nanomembranes. Adv Mater. 2013;25(15):2167–2173.10.1002/adma.201204619
  • Merkel TC, Bondar VI, Nagai K, et al. Gas sorption, diffusion, and permeation in poly(Dimethylsiloxane). J Polym Sci Part B Polym Phys. 2000;38(3):415–434.10.1002/(ISSN)1099-0488
  • Meyerbröker N, Kriesche T, Zharnikov M. Novel ultrathin poly(ethylene Glycol) films as flexible platform for biological applications and plasmonics. ACS Appl Mater Interfaces. 2013;5(7):2641–2649.10.1021/am400065f
  • Meyerbröker N, Zharnikov M. Ultraflexible, freestanding nanomembranes based on poly(ethylene Glycol). Adv Mater. 2014;26(20):3328–3332.10.1002/adma.v26.20
  • Lindemann P, Tsotsalas M, Shishatskiy S, et al. Preparation of free-standing conjugated microporous polymer nanomembranes for gas separation. Chem Mater. 2014;26(24):7189–7193.10.1021/cm503924 h