10,479
Views
76
CrossRef citations to date
0
Altmetric
Focus on Nanocellulose-based Materials

Thermal conductivity analysis and applications of nanocellulose materials

ORCID Icon &
Pages 877-892 | Received 22 Aug 2017, Accepted 07 Oct 2017, Published online: 03 Nov 2017

References

  • Saito T, Nishiyama Y, Putaux JL, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7(6):1687–1691.10.1021/bm060154s
  • Iwamoto S, Endo T. 3 nm thick lignocellulose nano fibers obtained from esterified wood with maleic anhydride. ACS Macro Lett. 2015;4(1):80–83.10.1021/mz500787p
  • Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8(8):2485–2491.10.1021/bm0703970
  • Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8(10):3276–3278.10.1021/bm700624p
  • Uetani K, Yano H. Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules. 2011;12(2):348–353.10.1021/bm101103p
  • Chen W, Yu H, Liu Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers. Carbohydr Polym. 2011;86(2):453–461.10.1016/j.carbpol.2011.04.061
  • Henriksson M, Berglund LA, Isaksson P, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules. 2008;9(6):1579–1585.10.1021/bm800038n
  • Pääkkö M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8(6):1934–1941.10.1021/bm061215p
  • Kuramae R, Saito T, Isogai A. TEMPO-oxidized cellulose nanofibrils prepared from various plant holocelluloses. React Funct Polym. 2014;85:126–133.10.1016/j.reactfunctpolym.2014.06.011
  • Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose. 2009;16(6):1017–1023.10.1007/s10570-009-9334-9
  • Zimmermann T, Bordeanu N, Strub E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym. 2010;79(4):1086–1093.10.1016/j.carbpol.2009.10.045
  • Horikawa Y, Imai T, Sugiyama J. Visualization of cellulase interactions with cellulose microfibril by transmission electron microscopy. Cellulose. 2017;24(1):1–9.10.1007/s10570-016-1105-9
  • Iwamoto S, Isogai A, Iwata T. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules. 2011;12(3):831–836.10.1021/bm101510r
  • Uetani K, Yano H. Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter. 2013;9(12):3396–3401.10.1039/c3sm27822 k
  • Battista OA. Hydrolysis and crystallization of cellulose. Ind Eng Chem. 1950;42(3):502–507.10.1021/ie50483a029
  • Camarero Espinosa S, Kuhnt T, Foster EJ, et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules. 2013;14(4):1223–1230.10.1021/bm400219u
  • Araki J, Wada M, Kuga S, et al. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci. 1999;45(3):258–261.10.1007/BF01177736
  • Beck-Candanedo S, Roman M, Gray DG. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 2005;6(2):1048–1054.10.1021/bm049300p
  • Ebeling T, Paillet M, Borsali R, et al. Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir. 1999;15(19):6123–6126.10.1021/la990046+
  • Uetani K, Yano H. Semiquantitative structural analysis of highly anisotropic cellulose nanocolloids. ACS Macro Lett. 2012;1(6):651–655.10.1021/mz300109v
  • Habibi Y, Dufresne A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules. 2008;9(7):1974–1980.10.1021/bm8001717
  • Cao X, Chen Y, Chang PR, et al. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci. 2008;109:3804–3810.10.1002/app.v109:6
  • Cao X, Dong H, Li CM. New nanocomposite materials reinforced with cellulose nanocrystals in waterborne polyurethane. Biomacromolecules. 2007;8(3):899–904.10.1021/bm0610368
  • Morán JI, Alvarez VA, Cyras VP, et al. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 2008;15(1):149–159.10.1007/s10570-007-9145-9
  • Lu P, Hsieh Y. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym. 2012;87(1):564–573.10.1016/j.carbpol.2011.08.022
  • Araki J, Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir. 2001;17(15):4493–4496.10.1021/la0102455
  • Hirai A, Inui O, Horii F, et al. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir. 2009;25(1):497–502.10.1021/la802947 m
  • de Souza Lima MM, Borsali R. Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir. 2002;18(4):992–996.10.1021/la0105127
  • van den Berg O, Capadona JR, Weder C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules. 2007;8(4):1353–1357.10.1021/bm061104q
  • Elazzouzi-Hafraoui S, Nishiyama Y, Heux L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules. 2008;9(1):57–65.10.1021/bm700769p
  • Battista A, Coppicic S, Howsmon JA, et al. Level-off degree of polymerization. Ind Eng Chem. 1956;48:333–335.10.1021/ie50554a046
  • Nishiyama Y. Structure and properties of the cellulose microfibril. J Wood Sci. 2009;55(4):241–249.10.1007/s10086-009-1029-1
  • Iwamoto S, Kai W, Isogai A, et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules. 2009;10(9):2571–2576.10.1021/bm900520n
  • Sturcova A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6(2):1055–1061.10.1021/bm049291 k
  • Saito T, Kuramae R, Wohlert J, et al. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules. 2013;14(1):248–253.10.1021/bm301674e
  • Hori R, Wada M. The thermal expansion of wood cellulose crystals. Cellulose. 2005;12(5):479–484.10.1007/s10570-005-5967-5
  • Hill DJT, Le, TT, Darveniza, M, et al. A study of degradation of cellulosic insulation materials in a power transformer, part 1. Molecular weight study of cellulose insulation paper. Polym Degrad Stab. 1995;48(1):79–87.10.1016/0141-3910(95)00023-F
  • Kes M, Christensen BE. Degradation of cellulosic insulation in power transformers: a SEC-MALLS study of artificially aged transformer papers. Cellulose. 2013;20(4):2003–2011.10.1007/s10570-013-9963-x
  • Al-Homoud MS. Performance characteristics and practical applications of common building thermal insulation materials. Build Environ. 2005;40(3):353–366.10.1016/j.buildenv.2004.05.013
  • Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities. Energy Build. 2011;43(10):2549–2563.10.1016/j.enbuild.2011.05.015
  • Nicolajsen A. Thermal transmittance of a cellulose loose-fill insulation material. Build Environ. 2005;40(7):907–914.10.1016/j.buildenv.2004.08.025
  • Zhou X, Zheng F, Li H, et al. An environment-friendly thermal insulation material from cotton stalk fibers. Energy Build. 2010;42(7):1070–907.
  • Nguyen ST, Feng J, Ng SK, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp. 2014;445:128–134.10.1016/j.colsurfa.2014.01.015
  • Kymäläinen H, Sjöberg A. Flax and hemp fibres as raw materials for thermal insulations. Build Environ. 2008;43:1261–1269.10.1016/j.buildenv.2007.03.006
  • Sehaqui H, Salajková M, Zhou Q, et al. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter. 2010;6(8):1824–1832.10.1039/b927505c
  • Saito T, Uematsu T, Kimura S, et al. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter. 2011;7(19):8804.10.1039/c1sm06050c
  • Kobayashi Y, Saito T, Isogai A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chemie Int Ed. 2014;53(39):10394–10397.10.1002/anie.201405123
  • Sakai K, Kobayashi Y, Saito T, et al. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose. Sci Rep. 2016;6:741.10.1038/srep20434
  • Chen W, Li Q, Wang Y, et al. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chem Sus Chem. 2014;7(1):154–161.10.1002/cssc.v7.1
  • Wang Y, Uetani K, Liu S, et al. Multi-functional bionanocomposite foams using a Chitosan matrix reinforced by nanofibrillated cellulose. Chem Nano Mat. 2017;3(2):98–108.
  • Hayase G, Kanamori K, Abe K, et al. Polymethylsilsesquioxane − Cellulose nano fiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity. ACS Appl Mater Interfaces. 2014;6(12):9466–9471.10.1021/am501822y
  • Bendahou D, Bendahou A, Seantier B, et al. Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties. Ind Crops Prod. 2015;65:374–382.10.1016/j.indcrop.2014.11.012
  • Cai J, Liu S, Feng J, et al. Cellulose – Silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chemie Int Ed. 2012;124:2118–2121.10.1002/ange.v124.9
  • Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol. 2015;10:277–283.
  • Vargaftik NB. Handbook of thermal conductivity of liquids and gases. Boca Raton, FL: CRC Press; 1993.
  • Shimazaki Y, Miyazaki Y, Takezawa Y, et al. Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules. 2007;8(9):2976–2978.10.1021/bm7004998
  • Bahar E, Ucar N, Onen A, et al. Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci. 2012;125:2882–2889.10.1002/app.v125.4
  • Nogi M, Iwamoto S, Nakagaito AN, et al. Optically transparent nanofiber paper. Adv Mater. 2009;21(16):1595–1598.10.1002/adma.v21:16
  • Yano H, Sugiyama J, Nakagaito AN, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17(2):153–155.10.1002/(ISSN)1521-4095
  • Nogi M, Ifuku S, Abe K, et al. Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett. 2006;88:133124.10.1063/1.2191667
  • Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater. 2008;20(10):1849–1852.10.1002/(ISSN)1521-4095
  • Okahisa Y, Yoshida A, Miyaguchi S, et al. Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol. 2009;69(11-12):1958–1961.10.1016/j.compscitech.2009.04.017
  • Nogi M, Yano H. Optically transparent nanofiber sheets by deposition of transparent materials: a concept for a roll-to-roll processing. Appl Phys Lett. 2009;94:233117.
  • Yagyu H, Ifuku S, Nogi M. Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate. Flex Print Electron. 2017;2:014003.10.1088/2058-8585/aa60f4
  • Nagashima K, Koga H, Celano U, et al. Cellulose nanofiber paper as an ultra flexible nonvolatile memory. Sci Rep. 2014;4:5532.
  • Koga H, Nogi M, Komoda N, et al. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater. 2014;6(3):e93.10.1038/am.2014.9
  • Nogi M, Karakawa M, Komoda N, et al. Transparent conductive nanofiber paper for foldable solar cells. Sci Rep. 2015;5:689.10.1038/srep17254
  • Inui T, Koga H, Nogi M, et al. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater. 2015;27(6):1112–1116.10.1002/adma.201404555
  • Nogi M, Komoda N, Otsuka K, et al. Foldable nanopaper antennas for origami electronics. Nanoscale. 2013;5(10):4395–4399.10.1039/c3nr00231d
  • Waldrop M. The chips are down for Moore’s law. Nature. 2016;530:144–147.10.1038/530144a
  • Diaz JA, Ye Z, Wu X, et al. Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules. 2014;15(11):4096–4101.10.1021/bm501131a
  • handmadejapan.com. The yuton of Teruo and Tomomi Makino [Internet]. [cited 2017 Apr 9]. Available from: http://www.handmadejapan.com/e_/features_/eft007_01.htm
  • Uetani K, Okada T, Oyama HT. Crystallite size effect on thermal conductive properties of nonwoven nanocellulose sheets. Biomacromolecules. 2015;16(7):2220–2227.10.1021/acs.biomac.5b00617
  • Uetani K, Okada T, Oyama HT. Thermally conductive and optically transparent flexible films with surface-exposed nanocellulose skeletons. J Mater Chem C. 2016;4(41):9697–9703.10.1039/C6TC03318K
  • Uetani K, Okada T, Oyama HT. In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydrogels. ACS Macro Lett. 2017;6(4):345–349.10.1021/acsmacrolett.7b00087
  • Zeng X, Sun J, Yao Y, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano. 2017;11(5):5167–5178.10.1021/acsnano.7b02359
  • Zhu H, Li Y, Fang Z, et al. Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano. 2014;8(4):3606–3613.10.1021/nn500134 m
  • Uetani K, Ata S, Tomonoh S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater. 2014;26(33):5857–5862.10.1002/adma.v26.33
  • Morikawa J, Tan J, Hashimoto T. Study of change in thermal diffusivity of amorphous polymers during glass transition. Polymer (Guildf). 1995;36(23):4439–4443.10.1016/0032-3861(95)96850-8
  • Hashimoto T, Morikawa J, Kurihara T, et al. Frequency dependent thermal diffusivity of polymers by temperature wave analysis. Thermochim Acta. 1997;304/305:151–156.10.1016/S0040-6031(97)00026-9
  • Hashimoto T, Matsui Y, Hagiwara A, et al. Thermal diffusivity measurement of polymer films by the temperature wave method using joule-heating. Thermochim Acta. 1990;163:317–324.10.1016/0040-6031(90)80413-S
  • Morikawa J, Hashimoto T. Thermal diffusivity measurement of papers by an ac Joule heating method. Polym Int. 1998;45(2):207–210.10.1002/(ISSN)1097-0126
  • Kato H, Baba T, Okaji M. Anisotropic thermal-diffusivity measurements by a new laser-spot-heating technique. Meas Sci Technol. 2001;12(12):2074–2080.10.1088/0957-0233/12/12/307
  • Parker WJ, Jenkins RJ, Butler CP, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32(9):1679–1684.10.1063/1.1728417
  • Chen H, Ginzburg VV, Yang J, et al. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci. 2016;59:41–85.10.1016/j.progpolymsci.2016.03.001
  • Chae HG, Kumar S. Making strong fibers. Science. 2008;319(5865):908–909.10.1126/science.1153911
  • Zhang T, Wu X, Luo T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties. J Phys Chem C. 2014;118(36):21148–21159.10.1021/jp5051639
  • Zhang T, Luo T. Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J Phys Chem B. 2016;120(4):803–812.10.1021/acs.jpcb.5b09955
  • Zhang T, Luo T. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers. ACS Nano. 2013;7(9):7592–7600.10.1021/nn401714e
  • Tian M, Qu L, Zhang X, et al. Enhanced mechanical and thermal properties of regenerated cellulose /graphene composite fibers. Carbohydr Polym. 2014;111:456–462.10.1016/j.carbpol.2014.05.016
  • Morikawa J, Kurihara T, Hashimoto T, et al. Thermal diffusivity of thermosetting materials by temperature-wave analysis. Thermochim Acta. 1997;299:95–100.10.1016/S0040-6031(97)00141-X
  • Morikawa J, Hashimoto T. Study on thermal diffusivity of poly (ethylene terephthalate) and poly (ethylene naphthalate). Polymer (Guildf). 1997;38(21):5397–5400.10.1016/S0032-3861(97)00092-X
  • Yamanaka A, Fujishiro H, Kashima T, et al. Thermal conductivity of high strength polyethylene fiber in low temperature. J Polym Sci Part B Polym Phys. 2005;43(12):1495–1503.10.1002/(ISSN)1099-0488
  • Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5(4):251–255.10.1038/nnano.2010.27
  • Singh V, Bougher TL, Weathers A, et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014;9(5):384–390.10.1038/nnano.2014.44
  • Huang X, Liu G, Wang X. New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater. 2012;24(11):1482–1486.10.1002/adma.201104668
  • Choy CL, Wong YW, Yang GW, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J Polym Sci Part B Polym Phys. 1999;37(23):3359–3367.10.1002/(ISSN)1099-0488
  • Wang X, Ho V, Segalman RA, et al. Thermal conductivity of high-modulus polymer fibers. Macromolecules. 2013;46(12):4937–4943.10.1021/ma400612y
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36(7):914–944.10.1016/j.progpolymsci.2010.11.004
  • Weidenfeller B, Höfer M, Schilling FR. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A Appl Sci Manuf. 2004;35(4):423–429.10.1016/j.compositesa.2003.11.005
  • Song SH, Park KH, Kim BH, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater. 2013;25(5):732–737.10.1002/adma.201202736
  • Yu A, Ramesh P, Itkis ME, et al. Graphite Nanoplatelet−Epoxy composite thermal interface materials. J Phys Chem C. 2007;111(21):7565–7569.10.1021/jp071761s
  • Shahil KMF, Balandin AA. Graphene−multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12(2):861–867.10.1021/nl203906r
  • Choi S, Kim J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos Part B. 2013;51:140–147.10.1016/j.compositesb.2013.03.002
  • Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci. 2007;106:3587–3591.10.1002/app.v106:6
  • Bae J, Kim W, Cho S, et al. The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution. J Mater Sci. 2000;35:5907–5913.10.1023/A:1026741300020
  • Li M, Xiao Y, Zhang Z, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl Mater Interfaces. 2015;7:9157–9168.10.1021/acsami.5b01341
  • Yu A, Ramesh P, Sun X, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for eepoxy composites. Adv Mater. 2008;20(24):4740–4744.10.1002/adma.v20:24
  • Gulotty R, Castellino M, Jagdale P, et al. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube−polymer nanocomposites. ACS Nano. 2013;7(6):5114–5121.10.1021/nn400726 g
  • Pashayi K, Fard HR, Lai F, et al. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys. 2012;111:104310.10.1063/1.4716179
  • Huang H, Liu C, Wu Y, et al. Aligned carbon nanotube composite films for thermal management. Adv Mater. 2005;17(13):1652–1656.10.1002/(ISSN)1521-4095
  • Terao T, Zhi C, Bando Y, et al. Alignment of Boron Nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C. 2010;114:4340–4344.10.1021/jp911431f
  • Zhang Y, Han D, Zhao Y, et al. High-performance thermal interface materials consisting of vertically aligned graphene fi lm and polymer. Carbon N Y. 2016;109:552–557.10.1016/j.carbon.2016.08.051
  • Loeblein M, Tsang SH, Pawlik M, et al. High-density 3D-Boron Nitride and 3D-Graphene for high-performance nano−thermal interface material. ACS Nano. 2017;11:2033–2044.10.1021/acsnano.6b08218
  • Malekpour H, Chang K-H, Chen J-C, et al. Thermal conductivity of graphene laminate. Nano Lett. 2014;14(9):5155–5161.10.1021/nl501996v
  • Lv P, Tan X, Yu K, et al. Super-elastic graphene/carbon nanotube aerogel: a novel thermal interface material with highly thermal transport properties. Carbon N Y. 2016;99:222–228.10.1016/j.carbon.2015.12.026
  • Zhou L, Yang Z, Luo W, et al. Thermally conductive, electrical insulating, optically transparent bi-layer nanopaper. ACS Appl Mater Interfaces. 2016;8(42):28838–28843.10.1021/acsami.6b09471
  • Kittel C. Introduction to solid state physics. 8th ed. Uno R, Tsuya N, Niizeki K, et al, editor. Maruzen, Tokyo: John Wiley & Sons; New York; 2005.
  • Hu C, Kiene M, Ho PS. Thermal conductivity and interfacial thermal resistance of polymeric low k films. Appl Phys Lett. 2001;79:4121.10.1063/1.1419239
  • Liu J, Ju S, Ding Y, et al. Size effect on the thermal conductivity of ultrathin polystyrene films. Appl Phys Lett. 2014;104:153110.10.1063/1.4871737
  • Yamane T, Mori Y, Katayama S, et al. Measurement of thermal diffusivities of thin metallic films using the ac calorimetric method. J Appl Phys. 1997;82(3):1153–1156.10.1063/1.365882
  • Zhang Q, Cao B, Zhang X, et al. Size effects on the thermal conductivity of polycrystalline platinum nanofilms. J Phys Condens Matter. 2006;18:7937–7950.10.1088/0953-8984/18/34/007
  • Szwejkowski C, Creange NC, Sun K, et al. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. Appl Phys Lett. 2015;117:84308.
  • Jang W, Chen Z, Bao W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010;10(10):3909–3913.10.1021/nl101613u
  • Jang W, Chen Z, Bao W, et al. Correction to thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2011;11(7):3049–3049.10.1021/nl202062s
  • Nan C-W, Birringer R. Determining the Kapitza resistance and the thermal conductivity of polycrystals: a simple model. Phys Rev B. 1998;57(14):8264–8268.10.1103/PhysRevB.57.8264
  • Zhong H, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B. 2006;74(12):181.10.1103/PhysRevB.74.125403
  • Eichhorn SJ, Sampson WW. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J R Soc Interface. 2005;2(4):309–318.10.1098/rsif.2005.0039