4,307
Views
44
CrossRef citations to date
0
Altmetric
Energy Materials

Unconventional aspects of electronic transport in delafossite oxides

, , , &
Pages 919-938 | Received 13 Jun 2017, Accepted 14 Oct 2017, Published online: 13 Nov 2017

References

  • Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Rev Mod Phys. 1998;70:1039–1263.
  • McWhan DB, Menth A, Remeika JP, et al. Metal-insulator transitions in pure and doped V2O3. Phys Rev B. 1973;7:1920–1931.
  • Held K, Keller G, Eyert V, et al. Mott-Hubbard metal-insulator transition in paramagnetic V2O3: An LDA+DMFT(QMC) study. Phys Rev Lett. 2001;86:5345–5348.
  • Limelette P, Georges A, Jérome D, et al. Universality and critical behavior at the Mott transition. Science. 2003;302:89–92.
  • Grygiel C, Simon Ch, Mercey B, et al. Thickness-dependence of the electronic properties in V2O3 thin films. Appl Phys Lett. 2007;91:262103.
  • von Helmolt R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOxferromagnetic films. Phys Rev Lett. 1993;71:2331–2333.
  • Tomioka Y, Asamitsu A, Moritomo Y, et al. Collapse of a charge-ordered state under a magnetic field in Pr1/2Sr1/2MnO3. Phys Rev Lett. 1995;74:5108–5111.
  • Raveau B, Maignan A, Caignaert V. Spectacular giant magnetoresistance effects in the polycrystalline perovskite Pr0.7Sr0.05Ca0.25MnO3–δ. J Solid State Chem. 1995;117:424–426.
  • Maignan A, Simon C, Caignaert V, et al. Giant magnetoresistance ratios superior to 1011 in manganese perovskites. Solid State Commun. 1995;96:623–625.
  • Eyert V, Laschinger C, Kopp T, et al. Extended moment formation and magnetic ordering in the trigonal chain compound Ca3Co2O6. Chem Phys Lett. 2004;385:249–254.
  • Frésard R, Laschinger C, Kopp T, et al. The origin of magnetic interactions in Ca3Co2O6. Phys Rev B. 2004;69:140405(R).
  • Wu H, Haverkort MW, Hu Z, et al. Nature of magnetism in Ca3Co2O6. Phys Rev Lett. 2005;95:186401.
  • Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in Na3Co2O4 single crystals. Phys Rev B. 1997;56:R12685.
  • Masset AC, Michel C, Maignan A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B. 2000;62:166–175.
  • Friedel C. Sur une combinaison naturelle des oxydes de fer et de cuivre, et sur la reproduction de l’atacamite. Sciences Academy. 1873;77:211–214.
  • Shannon RD, Rogers DB, Prewitt CT. Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg Chem. 1971;10:713–718; Prewitt CT, Shannon RD, Rogers DB. Chemistry of noble metal oxides. II. Crystal structure of PtCoO2, PdCoO2, CuFeO2, AgFeO2. Inorg Chem. 1971;10:719--722; Rogers DB, Shannon RD, Prewitt CT. Chemistry of noble metal oxides. III. Electrical transport properties and crystal chemistry of ABO2 compounds with delafossite structure. Inorg Chem. 1971;10:723--727.
  • Tanaka M, Hasegawa M, Higuchi T, et al. Origin of the metallic conductivity in PdCoO2 with delafossite structure. Physica B. 1998;245:157–163.
  • Marquardt MA, Ashmore NA, Cann DP. Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films. 2006;496:146–156.
  • Kawazoe H, Yasukawa M, Hyodo H, et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939–942.
  • Hasegawa M, Tanaka M, Yagi T, et al. Compression behavior of the delafossite-type metallic oxide PdCoO2 below 10 GPa. Solid State Commun. 2003;128:303–307.
  • Wawrzyńska E, Coldea R, Wheeler EM, et al. Orbital degeneracy removed by charge order in triangular antiferromagnet AgNiO2. Phys Rev Lett. 2007;99:157204.
  • Kang J-S, Lee SS, Kim G, et al. Valence and spin states in delafossite AgNiO2 and the frustrated Jahn-Teller system ANiO2 (A=Li, Na). Phys Rev B. 2007;76:195122.
  • Oohara Y, Mitsuda S, Yoshizawa H, et al. Magnetic phase transition in AgCrO2. J Phys Soc Jpn. 1994;63:847–850.
  • Seki S, Onose Y, Tokura Y. Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A=Cu, Ag, Li, or Na). Phys Rev Lett. 2008;101:067204.
  • Hasegawa M, Inagawa I, Tanaka M, et al. Thermoelectric power of delafossite-type metallic oxide PdCoO2. Solid State Commun. 2002;121:203–205.
  • Mackenzie AP. The properties of ultrapure delafossite metals. Rep Prog Phys. 2017;80:032501.
  • Doumerc JP, Wichainchai A, Ammar A, et al. On the formation of delafossites type oxides and solid solutions. Mat Res Bull. 1986;21:745–752.
  • Poienar M, Damay F, Martin C, et al. Structural and magnetic properties of CuCr1–xMgxO2 by neutron powder diffraction. Phys Rev B. 2009;79:014412.
  • Albaalbaky A, Kvashnin YO, Ledue D, et al. Magnetoelectric properties of the multiferroic CuCrO2 studied by means of ab initio calculations and Monte Carlo simulations. Phys Rev B. 2017;96:064431.
  • Okuda T, Jufuku N, Hidaka S, et al. Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr1–xMgxO2 (0≤x≤0.04). Phys Rev B. 2005;72:144403.
  • Ono Y, Satoh K, Nozaki T, et al. Structural, magnetic and transport properties of delafossite - type oxide CuCr1–xMgxO2 (0≤x≤0.05). Jpn J Appl Phys. 2007;46:1071–1075.
  • Koshibae W, Tsutsui K, Maekawa S. Thermopower in cobalt oxides. Phys Rev B. 2000;62:6869–6872.
  • Kuriyama K, Nohara M, Sasagawa T, et al. High temperature thermoelectric properties of delafossite oxides CuRh1–xMgxO2. In: Proceedings of the 25th International Conference on Thermoelectrics. IEEE: Piscataway; 2006. p. 97.
  • Nozaki T, Hayashi K, Kajitani T. Thermoelectric properties of delafossite type oxide CuFe1–xNixO2 (0≤x≤0.05). J Chem Eng Jpn. 2007;40:1205–1209
  • Maignan A, Martin C, Frésard R, et al. On the strong impact of doping in the triangular antiferromagnet CuCrO2. Solid State Commun. 2009;149:962–967.
  • Guilmeau E, Poienar M, Kremer S, et al. Mg substitution in CuCrO2 delafossite compounds. Solid State Commun. 2011;151:1798–1801.
  • Maignan A, Eyert V, Martin C, et al. Electronic structure and thermoelectric properties of CuRh1–xMgxO2. Phys Rev B. 2009;80:115103.
  • Guilmeau E, Maignan A, Martin C. Thermoelectric oxides: effect of doping in delafossites and zinc oxides. J Electron Mater. 2009;38:1104–1107.
  • Kremer S, Frésard R. Thermoelectric transport properties of an apparent Fermi liquid: relation to an analytic anomaly in the density of states and application to hole-doped delafossites. Ann Phys (Berlin). 2012;524:21–36.
  • Terada N. Spin and orbital orderings behind multiferroicity in delafossite and related compounds. J Phys Condens Mater. 2014;26:453202.
  • Kushwaha P, Sunko V, Moll PJW, et al. Nearly free electrons in a 5d delafossite oxide metal. Sci Adv. 2015;1:1500692.
  • Kushwaha P, Borrmann H, Khim S, et al. Single crystal growth, structure, and electronic properties of metallic delafossite PdRhO2. Cryst Growth Des. 2017;17:4144–4150.
  • Hicks CW, Gibbs AS, Mackenzie AP, et al. Quantum oscillations and high carrier mobility in the delafossite PdCoO2. Phys Rev Lett. 2012;109:116401.
  • Noh HJ, Jeong J, Jeong J, et al. Anisotropic electric conductivity of delafossite PdCoO2 studied by angle-resolved photoemission spectroscopy. Phys Rev Lett. 2009;102:256404.
  • Ok JM, Jo YJ, Kim K, et al. Quantum oscillations of the metallic triangular-lattice antiferromagnet PdCrO2. Phys Rev Lett. 2013;111:176405.
  • Hicks CW, Gibbs AS, Zhao L, et al. Quantum oscillations and magnetic reconstruction in the delafossite PdCrO2. Phys Rev B. 2015;92:014425.
  • Shin YJ, Doumerc JP, Dordor P, et al. Preparation and physical properties of the delafossite-type solid solutions AgCoxNi1–xO2 (0≤x≤0.05). J Solid State Chem. 1993;107:194–200.
  • Takatsu H, Maeno Y. Single crystal growth of the metallic triangular-lattice antiferromagnet PdCrO2. J Crys Growth. 2010;312:3461–3465.
  • Takatsu H, Onezawa SY, Ouri SM, et al. Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO2. J Phys Soc Jpn. 2007;76:104701.
  • Daou R, Frésard R, Hébert S, et al. Large anisotropic thermal conductivity of the intrinsically two-dimensional metallic oxide PdCoO2. Phys Rev B. 2015;91:041113(R).
  • Moll PJW, Kushwaha P, Nandi N, et al. Evidence for hydrodynamic electron flow in PdCoO2. Science. 2016;351:1061–1064.
  • Kikugawa N, Goswami P, Kiswandhi A, et al. Interplanar coupling-dependent magnetoresistivity in high-purity layered metals. Nat Commun. 2016;7:10903.
  • Takatsu H, Yoshizawa H, Yonezawa S, et al. Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO2. Phys. Rev. B. 2009;79:104424.
  • Billington D, Ernsting D, Millichamp TE, et al. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2. Sci Rep. 2015;5:12428.
  • Takatsu H, Ishikawa JJ, Yonezawa S, et al. Extremely large magnetoresistance in the nonmagnetic metal PdCoO2. Phys Rev Lett. 2013;111:056601.
  • Goswami P, Pixley JH, Das Sarma S. Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal. Phys Rev B. 2015;92:075205.
  • Takatsu H, Yonezawa S, Fujimoto S, et al. Unconventional anomalous hall effect in the metallic triangular-lattice magnet PdCrO2. Phys Rev Lett. 2010;105:137201.
  • Daou R, Frésard R, Hébert S, et al. Impact of short-range order on transport properties of the two-dimensional metal PdCrO2. Phys Rev B. 2015;92:245115.
  • Ong KP, Singh DJ, Wu P. Unusual transport and strongly anisotropic thermopower in PtCoO2 and PdCoO2. Phys Rev Lett. 2010;104:176601.
  • Zhou C, Birner S, Tang Y, et al. Driving perpendicular heat flow: (p×n)-type transverse thermoelectrics for microscale and cryogenic peltier cooling. Phys Rev Lett. 2013;110:227701.
  • Arsenijević S, Ok JM, Robinson P, et al. Anomalous magnetothermopower in a metallic frustrated antiferromagnet. Phys Rev Lett. 2016;116:087202.
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871.
  • Kohn K, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–A1138.
  • Wimmer E, Christensen M, Eyert V, et al. Computational materials engineering: recent applications of vasp in the MedeAsoftware environment. J Korean Ceram Soc. 2016;53:263–272.
  • Rozanska X, Christensen M, Wolf W, et al. L’apport de la chimie et de la physique théoriques dans la transition vers les énergies renouvelables. L’actualité Chimique. 2016;408–409:19–23.
  • Eyert V, Frésard R, Maignan A. On the metallic conductivity of the delafossites PdCoO2 and PtCoO2. Chem Mater. 2008;20:2370–2373.
  • Eyert V, Frésard R, Maignan A. Long-range magnetic order and spin-lattice coupling in the delafossite CuFeO2. Phys Rev B. 2008;78:052402.
  • Eyert V. Basic notions and applications of the augmented spherical wave method. Int J Quantum Chem. 2000;77:1007–1031.
  • Eyert V. The augmented spherical wave method. Lecture notes in physics. Berlin Heidelberg: Springer; 2012. p. 849.
  • Seshadri R, Felser C, Thieme K, et al. Metal-metal bonding and metallic behavior in some ABO2 delafossites. Chem Mater. 1998;10:2189–2196.
  • Okabe H, Matoba M, Kyomen T, Itoh M. Magnetic property and electronic structure of itinerant PdxCoyO2 magnets. J Appl Phys. 2003;93:7258–7260.
  • Higuchi T, Tsukamoto T, Tanaka M, et al. Photoemission study on PdCoO2. J Electron Spect Rel Phen. 1998;92:71–75.
  • Higuchi T, Hasegawa M, Tanaka M, et al. Unoccupied electronic state of delafossite-type PdCoO2 single crystal probed using inverse photoemission spectroscopy. Jap J Appl Phys. 2004;43:699–700.
  • Ong KP, Zhang J, Tse JS, et al. Origin of anisotropy and metallic behavior in delafossite PdCoO2. Phys Rev B. 2010;81:115120.
  • Gruner ME, Eckern U, Pentcheva R. Impact of strain-induced electronic topological transition on the thermoelectric properties of PtCoO2 and PdCoO2. Phys Rev B. 2015;92:235140.
  • Noh H-J, Jeong J, Jeong J, et al. Orbital character of the conduction band of delafossite PdCoO2 studied by polarization-dependent soft x-ray absorption spectroscopy. Phys Rev B. 2009;80:073104.
  • Kimura K, Nakamura H, Kimura S, et al. Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO2. Phys Rev Lett. 2009;103:107201.
  • Muir AH, Wiedersich M. An investigation of CuFeO2 by the Mössbauer effect. J Phys Chem Solids. 1967;28:65–71.
  • Mekata M, Yaguchi N, Takagi T, et al. Magnetic ordering in delafossite CuFeO2. J Magn Magn Mater. 1992;104:823–824.
  • Mekata M, Yaguchi N, Takagi T, et al. Successive magnetic ordering in CuFeO2 -a new type of partially disordered phase in a triangular lattice antiferromagnet-. J Phys Soc Jpn. 1993;62:4474–4487.
  • Petrenko OA, Balakrishnan G, Lees MR, et al. High-magnetic-field behavior of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B. 2000;62:8983–8988.
  • Kimura T, Lashley JC, Ramirez AP. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B. 2006;73:220401(R).
  • Ye F, Ren Y, Huang Q, et al. Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev B. 2006;73:220404(R).
  • Ye F, Fernandez-Baca JA, Fishman RS, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett. 2007;99:157201.
  • Seki S, Yamasaki Y, Shiomi Y, et al. Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys Rev B. 2007;75:100403(R).
  • Ruttapanun C, Wichainchai A, Prachamon W, et al. Thermoelectric properties of Cu1–xPtxFe2O2 (0.0≤x≤0.05) delafossite-type transition oxide. J Alloys Compd. 2011;509:4588–4594.
  • Galakhov VR, Poteryaev AI, Kurmaev EZ, et al. Valence-band spectra and electronic structure of CuFeO2. Phys Rev B. 1997;56:4584–4591.
  • Ong KP, Bai K, Blaha P, Wu P. Electronic structure and optical properties of AgFeO2 (A = Ag, Cu) within GGA calculations. Chem Mater. 2007;19:634–640.
  • Singh DJ. Electronic and thermoelectric properties of CuFeO2: density functional calculations. Phys Rev B. 2007;76:085110.
  • Zhong C, Cao H, Fang J, et al. Spin-lattice coupling and helical-spin driven ferroelectric polarization in multiferroic CuFeO2. Appl Phys Lett. 2010;97:094103.
  • Hiraga H, Makino T, Fukumura T, et al. Electronic structure of the delafossite-type CuMO2 (M = Sc, Cr, Mn, Fe, and Co): optical absorption measurements and first-principles calculations. Phys Rev B. 2011;84:041411.
  • Kadowaki H, Kikuchi H, Ajiro Y. Neutron powder diffraction study of the 2-dimensional triangular lattice antiferromagnet CuCrO2. J Phys Condens Matter. 1990;2:4485–4493.
  • Soda M, Kimura K, Kimura T, et al. Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO2 with proper-screw order. J Phys Soc Jpn. 2009;78:124703.
  • Kimura K, Otani T, Nakamura H, et al. Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO2. J Phys Soc Jpn. 2009;78:113710.
  • Pachoud E, Singh K, Bréard Y, et al. Magnetic dilution and steric effects in the multiferroic delafossite CuCrO2. Phys Rev B. 2012;86:054437.
  • Crottaz O, Kubel F, Schmid H. Preparation of trigonal and hexagonal cuprous chromite and phase transition study based on single crystal structure data. J Solid State Chem. 1996;122:247–250.
  • Scanlon DO, Walsh A, Morgan BJ, et al. Effect of Cr substitution on the electronic structure of CuAl1–xCrxO2. Phys Rev B. 2009;79:035101.
  • Scanlon DO, Godinho KG, Morgan BJ, et al. Understanding conductivity anomalies in CuI-based delafossite transparent conducting oxides: theoretical insights. J Chem Phys. 2010;132:024707.
  • Scanlon DO, Watson GW. Understanding the p-type defect chemistry of CuCrO2. J Mater Chem. 2011;21:3655–3663.
  • Yokobori T, Okawa M, Konishi K, et al. Electronic structure of the hole-doped delafossite oxides CuCr1–xMgxO2. Phys Rev B. 2013;87:195124.
  • Jiang X-F, Liu X-F, Wu Y-Z, et al. Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles. Chin Phys B. 2012;21:077502.
  • Shibasaki S, Kobayashi W, Terasaki I. Transport properties of the delafossite Rh oxide Cu1–xAgxRh1–yMgyO2: effect of Mg substitution on the resistivity and Hall coefficient. Phys Rev B. 2006;74:235110.
  • Usui H, Arita R, Kuroki K. First-principles study on the origin of large thermopower in hole-doped LaRhO3 and CuRhO2. J Phys Condens Matter. 2009;21:064223.
  • Gu J, Yan Y, Krizan JW, et al. p-Type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc. 2014;136:830–833.
  • Toyoda K, Hinogami R, Miyata N, et al. Calculated descriptors of catalytic activity for water electrolysis anode: application to delafossite oxides. J Phys Chem. 2015;119:6495–6501.
  • Oswald HR, Kuhn P, Reller A. Bimetallic phases from reduction of delafossite-type oxides in hydrogen. Solid State Ionics. 1989;32--33:528–536.
  • Allen PB. Boltzmann theory and resistivity of metals. In: Chelikowsky JR, Louie SG, editors. Quantum theory of real materials. Boston: Kluwer; 1996. p. 219–250.
  • Thiel S, Hammerl G, Schmehl A, et al. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science. 2006;313:1942–1945.
  • Steffen K, Kopp T, Frésard R. Capacitance and compressibility of heterostructures with strong electronic correlations. Phys Rev B. 2017;95:035143.
  • Claessen R, Anderson RO, Gweon G-H, et al. Complete band structure determination of the quasi-two-dimensional Fermi-liquid reference compound TiTe2. Phys Rev B. 1996;54:2453–2465.
  • Kokalj A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci. 2003;28:155–168.
  • Maignan A, Martin C, Fr\’{e}sard R, et al. On the strong impact of doping in the triangular antiferromagnet CuCrO2. Solid State Commun. 2009;149:962–967.