1,719
Views
5
CrossRef citations to date
0
Altmetric
Energy Materials

Synthesis of core–shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

, , , , , & show all
Pages 939-949 | Received 10 Jul 2017, Accepted 22 Oct 2017, Published online: 20 Nov 2017

References

  • Caeiro G, Carvalho RH, Wang X. Activation of C2–C4 alkanes over acid bifunctional zeolites over and bifunctional zeolite catalysts. J Mol Catal A Chem. 2006;255:131–158.10.1016/j.molcata.2006.03.068
  • Chen J, Wang Y, Wei HL. Catalytic performance of methanol alkylation of toluene with silicalite-1 HZSM-5/composite molecular sieve. Nat Gas Chem Ind. 2009;34:22–26.
  • Fa-Kuen S, Wang SC, Chia-I Y, et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc. 2015;137:4276–4279.
  • Malgras V, Ji QM, Kamachi YC, et al. Templated synthesis for nanoarchitectured porous materials. Bull Chem Soc Jpn. 2015;88:1171–1200.10.1246/bcsj.20150143
  • Ariga K, Yamauchi Y, Rydzek G, et al. Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett. 2014;43:36–68.10.1246/cl.130987
  • Malgras V, Ataee-Esfahani H, Wang HJ, et al. Nanoarchitectures for mesoporous metals. Adv Mater. 2016;28:993–1010.10.1002/adma.201502593
  • Wang Y, Gu HC. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater. 2015;27:576–585.10.1002/adma.v27.3
  • Wang L, Liu CH, Nemoto Y, et al. Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules. RSC Adv. 2012;2:4608–4611.10.1039/c2ra20348 k
  • Wei Y, Li XM, Elzatahry AA, et al. A versatile in situ etching-growth strategy for synthesis of yolk-shell structured periodic mesoporous organosilica nanocomposites. RSC Adv. 2016;6:51470–51479.10.1039/C6RA08541E
  • Yue Q, Zhang Y, Jiang YJ, et al. Nanoengineering of core–shell magnetic mesoporous microspheres with tunable surface roughness. J Am Chem Soc. 2017;139:4954–4961.10.1021/jacs.7b01464
  • Kong DJ, Zou W, Zheng JL, et al. Influence factors and crystallization kinetics of the synthesis of MFI/MFI core shell molecular sieves. Acta Phys Chim Sin. 2009;25:1921–1928.
  • Dutta S, Bhaumik A, Wu KCW. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci. 2014;7:3574–3592.10.1039/C4EE01075B
  • Zhao DY. China: a big player in a small world. ACS Cent Sci. 2016;2:577–578.10.1021/acscentsci.6b00275
  • Zhu HW, Jing YK, Pal M, et al. Mesoporous TiO2@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol–gel process for superior lithium storage. Nanoscale. 2017;9:1539–1546.10.1039/C6NR08885F
  • Goossens AM, Wouters BH, Grobet PJ, et al. Synthesis and characterization of epitaxial FAU-on-EMT zeolite overgrowth materials. Eur J Inorg Chem. 2001;2001:1167–1181.10.1002/(ISSN)1099-0682
  • Kong D, Zheng J, Yuan X, et al. Fabrication of core/shell structure via overgrowth of ZSM-5 layers on mordenite crystals. Microporous Mesoporous Mater. 2009;119:91–96.10.1016/j.micromeso.2008.10.001
  • Goossens AM, Wouters BH, Buschmann V, et al. Oriented FAU zeolite films on micrometer-sized EMT crystals. Adv Mater. 1999;11:561–564.10.1002/(ISSN)1521-4095
  • Huang ZH, Che S. Fabrication of mesostructured silica materials through co-structure-directing route. Bull Chem Soc Jpn. 2015;88:617–632.10.1246/bcsj.20140416
  • Yamamoto E, Kuroda K. Colloidal mesoporous silica nanoparticles. Bull Chem Soc Jpn. 2016;89:501–539.10.1246/bcsj.20150420
  • Qian XF, Du JM, Li B, et al. Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem Sci. 2011;2:2006–2013.10.1039/c1sc00250c
  • Zhou J, Hua ZL, Cui XZ. Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol. Chem Commun. 2010;46:4994–4997.10.1039/c0cc00499e
  • Zhou J, Hua ZL, Zhao JJ. A micro/mesoporous aluminosilicate: key factors affecting framework crystallization during steam-assisted synthesis and its catalytic property. J Mater Chem. 2010;20:6764–6773.10.1039/c0jm00513d
  • Lei Q, Zhao T, Li F. Catalytic cracking of large moleculed over hierarchical zeolites. Chem Commun. 2006;103:1769–1772.10.1039/b600547 k
  • Liu M, Fan SM, Zhao TS. The eighteenth National Symposium on molecular sieves. 18th ed. Yinchuan: Yinchuan University Press; 2015.
  • Tang YN, Zhou HG, Li T. Fe3O4/TiO2 composite application in photocatalytic degradation of RhB. Guangdong Chem Ind. 2016;43:64–68.
  • Shi CW, Zhou WF, Sun XH, et al. Morphology control and aromatization of Y/SBA-15 composite zeolite. Appl Chem Ind. 2016;45:1085–1088.
  • Ma Y, Wang XL, Li C. Charge separation promoted by phase junctions in photocatalysts. Chin J Catal. 2015;36:1519–1527.10.1016/S1872-2067(15)60874-9
  • Dutta PK, Shieh DC, Puri M. Correlation of framework Raman bands of zeolites with structure. Zeolites. 1988;8:306–309.10.1016/S0144-2449(88)80127-1
  • Dutta PK, Shieh DC. Crystallization of zeolite-A: a spectroscopic study. J Phys Chem. 1986;90:2331–2334.10.1021/j100402a017
  • Fan FT, Li C. From molecular fragments to active sites: in situ, resonance UV Raman spectroscopy study on zeolitic catalyst. Sci Sin Chim. 2013;43:1818–1840.10.1360/N032013-00023
  • Guo Q, Fan FT, Guo ML, et al. UV Raman spectroscopic studies on the mechanism of FeAlPO4−5 synthesis. Chin J Catal. 2012;33:106–113.10.1016/S1872-2067(10)60281-1
  • Tepavitcharova S, Balarew F, Rull F, et al. Raman spectroscopic studies of ion association in the Na+, Mg2+/Cl−, SO42−/H2O system. J Raman Spectrosc. 2005;36:891–897.10.1002/(ISSN)1097-4555
  • Zhang W, Lu J, Han B, et al. Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15. Chem Mater. 2002;14:3413–3421.10.1021/cm011686c
  • Sung-Suh HM, Luan Z, Kevan L. Photoionization of porphyrins in mesoporous siliceous MCM-41, AIMCM-41, and TiMCM-41 molecular sieves. J Phys Chem B. 1997;101:10455–10463.10.1021/jp972772w
  • Patricia PR, Héctor AH, Jaime SV, et al. Crystallization of faujasite Y from seeds dispersed on mesoporous materials. Microporous Mesoporous Mater. 2010;132:363–374.
  • Sanhueza V, Kelm U, Cid R. Photoionization of porphyrins in mesoporous siliceous. J Chem Tech Biotech. 2003;78:485–488.10.1002/(ISSN)1097-4660
  • Zhang L, Wang HY, Jiang ZX. Synthesis and catalytic activity of core–shell MFI/CHA zeolites. Acta Phys Chim Sin. 2016;32:745–754.
  • Yin SH, Li SW, Zhang B, et al. Extraction kinetics of neodymium(III) from chloride medium in the presence of two complexing agents by D2EHPA using a constant interfacial area cell with laminar flow. Hydrometallurgy. 2016;161:160–165.10.1016/j.hydromet.2016.01.016