14,655
Views
193
CrossRef citations to date
0
Altmetric
Focus on Nanocellulose-based Materials

Nanocellulose-stabilized Pickering emulsions and their applications

ORCID Icon, &
Pages 959-971 | Received 03 Aug 2017, Accepted 02 Nov 2017, Published online: 23 Nov 2017

References

  • Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates - a review. J Control Release. 2008;128:185.10.1016/j.jconrel.2008.02.007
  • McClements DJ, Decker EA, Weiss J. Emulsion-based delivery systems for lipophilioc bioactive components. J Food Sci. 2007;72:R109.10.1111/jfds.2007.72.issue-8
  • Gutierrez JM, Gonzalez C, Maestro A, et al. Nano-emulsions: New applications and optimization of their preparation. Curr Opin Colloid Interface Sci. 2008;13:245.10.1016/j.cocis.2008.01.005
  • Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170.10.1016/j.ijpharm.2008.10.003
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostruct lipid carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Delivery Rev. 2002;54:S131.10.1016/S0169-409X(02)00118-7
  • McClements DJ, Decker EA. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci. 2000;65:1270.10.1111/jfds.2000.65.issue-8
  • Dickinson E. Milk protein interfacial layers and the relationship to emulsion stability and rheology. Colloids Surf B. 2001;20:197.10.1016/S0927-7765(00)00204-6
  • Guzey D, McClements DJ. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci. 2006;128:227.10.1016/j.cis.2006.11.021
  • Sjoblom J, Aske N, Auflem IH, et al. Our current understanding of water-in-crude oil emulsions. Recent characterization techniques and high pressure performance. Adv Colloid Interface Sci. 2003;100:399.10.1016/S0001-8686(02)00066-0
  • Kadota T, Yamasaki H. Recent advances in the combustion of water fuel emulsion. Prog Energy Combust Sci. 2002;28:385.10.1016/S0360-1285(02)00005-9
  • Zhang HF, Cooper AI. Synthesis and applications of emulsion-templated porous materials. Soft Matter. 2005;1:107.10.1039/b502551f
  • Silverstein MS. PolyHIPEs: Recent advances in emulsion-templated porous polymers. Prog Polym Sci. 2014;39:199.10.1016/j.progpolymsci.2013.07.003
  • Stubenrauch C, von Klitzing R. Disjoining pressure in thin liquid foam and emulsion films - new concepts and perspectives. J Phys Condens Matter. 2003;15:R1197.10.1088/0953-8984/15/27/201
  • Silverstein MS. PolyHIPEs: Recent advances in emulsion-templated porous polymers. Prog Polym Sci. 2014;39:199.10.1016/j.progpolymsci.2013.07.003
  • Israelachvili JN. Intermolecular and surface forces. 3rd ed. San Diego (CA): Academic; 2011.
  • Pickering SU. Emulsions. J Chem Soc. 1907;91:2001.10.1039/CT9079102001
  • Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Proc R Soc London. 1903;72:156.10.1098/rspl.1903.0034
  • Binks BP. Particles as surfactants - similarities and differences. Curr Opin Colloid Interface Sci. 2002;7:21.10.1016/S1359-0294(02)00008-0
  • Aveyard R, Binks BP, Clint JH. Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci. 2003;100:503.10.1016/S0001-8686(02)00069-6
  • Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A. 2013;439:23.10.1016/j.colsurfa.2013.02.054
  • Dickinson E. Food emulsions and foams: Stabilization by particles. Curr Opin Colloid Interface Sci. 2010;15:40.10.1016/j.cocis.2009.11.001
  • Dickinson E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci Tech. 2012;24:4.10.1016/j.tifs.2011.09.006
  • Levine S, Bowen BD, Partridge SJ. Stabilization of emulsions by fine particles .1. Partitioning of particles between continuous phase and oil-water interface. Colloids Surf. 1989;38:325.10.1016/0166-6622(89)80271-9
  • Kim J, Cote LJ, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc. 2010;132:8180.10.1021/ja102777p
  • Wang H, Hobbie EK. Amphiphobic carbon nanotubes as macroemulsion surfactants. Langmuir. 2003;19:3091.10.1021/la026883 k
  • Moore WC. Emulsification of water and of ammonium chloride solutions by means of lamp black. J Am Chem Soc. 1919;41:940.10.1021/ja02227a004
  • Gelot A, Friesen W, Hamza HA. Emulsification of oil and water in the presence of finely divided solids and surface-active agents. Colloids Surf. 1984;12:271.10.1016/0166-6622(84)80105-5
  • Ashby NP, Binks BP. Pickering emulsions stabilised by laponite clay particles. Phys Chem Chem Phys. 2000;2:5640.10.1039/b007098j
  • Cauvin S, Colver PJ, Bon SAF. Pickering stabilized miniemulsion polymerization: Preparation of clay armored latexes. Macromolecules. 2005;38:7887.10.1021/ma051070z
  • Bon SAF, Colver PJ. Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langmuir. 2007;23:8316.10.1021/la701150q
  • Tsugita A, Takemoto S, Mori K, et al. Studies on o/w emulsions stabilized with insoluble montmorillonite-organic complexes. J Colloid Interface Sci. 1983;95:551.10.1016/0021-9797(83)90214-X
  • Binks BP, Horozov TS. Aqueous foams stabilized solely by silica nanoparticles. Angew Chem Int Ed. 2005;44:3722.10.1002/(ISSN)1521-3773
  • Binks BP, Whitby CP. Nanoparticle silica-stabilised oil-in-water emulsions: Improving emulsion stability. Colloids Surf A. 2005;253:105.10.1016/j.colsurfa.2004.10.116
  • Midmore BR. Preparation of a novel silica-stabilized oil/water emulsion. Colloids Surf A. 1998;132:257.10.1016/S0927-7757(97)00094-0
  • Cui ZG, Shi KZ, Cui YZ, et al. Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate. Colloids Surf A. 2008;329:67.10.1016/j.colsurfa.2008.06.049
  • Chen T, Colver PJ, Bon SAF. Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization. Adv Mater. 2007;19:2286.10.1002/(ISSN)1521-4095
  • Lan Q, Liu C, Yang F, et al. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci. 2007;310:260.10.1016/j.jcis.2007.01.081
  • Melle S, Lask M, Fuller GG. Pickering emulsions with controllable stability. Langmuir. 2005;21:2158.10.1021/la047691n
  • Binks BP, Lumsdon SO. Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir. 2001;17:4540.10.1021/la0103822
  • Gautier F, Destribats M, Perrier-Cornet R, et al. Pickering emulsions with stimulable particles: From highly- to weakly-covered interfaces. Phys Chem Chem Phys. 2007;9:6455.10.1039/b710226 g
  • Tarimala S, Dai LL. Structure of microparticles in solid-stabilized emulsions. Langmuir. 2004;20:3492.10.1021/la036129e
  • Kalashnikova I, Bizot H, Cathala B, et al. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules. 2012;13:267.10.1021/bm201599j
  • Glasser WG, Atalla RH, Blackwell J, et al. About the structure of cellulose: Debating the Lindman hypothesis. Cellulose. 2012;19:589.10.1007/s10570-012-9691-7
  • Alqus R, Eichhorn SJ, Bryce RA. Molecular dynamics of cellulose amphiphilicity at the graphene-water interface. Biomacromolecules. 2015;16:1771.10.1021/acs.biomac.5b00307
  • Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product-properties, uses, and commercial potential. J Appl Polm Sci Appl Polym Symp. 1983;37:815.
  • Herrick FW, Casebier RL, Hamilton JK, et al. Microfibrillated cellulose: Morpholoby and accessibility. J Appl Polm Sci Appl Polym Symp. 1983;37:797.
  • Taniguchi T, Okamura K. New films produced from microfibrillated natural fibres. Polym Int. 1998;47:291.10.1002/(ISSN)1097-0126
  • Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8:3276.10.1021/bm700624p
  • Ranby BG. Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand. 1949;3:649.10.3891/acta.chem.scand.03-0649
  • Ranby BG. Cellulose and muscle - the colloidal properties of cellulose micelles. Discuss Faraday Soc. 1951;11:158.
  • Saito T, Nishiyama Y, Putaux JL, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687.10.1021/bm060154s
  • Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71.10.1039/C0NR00583E
  • Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules. 2010;11:1696.10.1021/bm100214b
  • Wågberg L, Decher G, Norgren M, et al. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir. 2008;24:784.10.1021/la702481v
  • Ghanadpour M, Carosio F, Larsson PT, et al. Phosphorylated cellulose nanofibrils: A renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules. 2015;16:3399.10.1021/acs.biomac.5b01117
  • Noguchi Y, Homma I, Matsubara Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose. 2017;24:1295.10.1007/s10570-017-1191-3
  • Yarbrough JM, Zhang RR, Mittal A, et al. Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano. 2017;11:3101.10.1021/acsnano.7b00086
  • Janardhnan S, Sain MM. Isolation of cellulose microfibrils - an enzymatic approach. Bioresources. 2006;1:176.
  • Pääkkö M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 2007;8:1934.
  • Hayashi N, Kondo T, Ishihara M. Enzymatically produced nano-ordered short elements containing cellulose I-beta crystalline domains. Carbohydr Polym. 2005;61:191.10.1016/j.carbpol.2005.04.018
  • Sugiyama J, Vuong R, Chanzy H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules. 1991;24:4168.10.1021/ma00014a033
  • Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc. 2002;124:9074.10.1021/ja0257319
  • Nishiyama Y, Sugiyama J, Chanzy H, et al. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc. 2003;125:14300.10.1021/ja037055w
  • Sakurada I, Nukushina Y, Ito T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci. 1962;57:651.10.1002/pol.1962.1205716551
  • Sturcova A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6:1055.10.1021/bm049291 k
  • Iwamoto S, Kai W, Isogai A, et al. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules. 2009;10:2571.10.1021/bm900520n
  • Wu XW, Moon RJ, Martini A. Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation. Cellulose. 2014;21:2233.10.1007/s10570-014-0325-0
  • Saito T, Kuramae R, Wohlert J, et al. An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules. 2013;14:248.10.1021/bm301674e
  • Hori R, Wada M. The thermal expansion of wood cellulose crystals. Cellulose. 2005;12:479.10.1007/s10570-005-5967-5
  • Diaz JA, Wu XW, Martini A, et al. Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules. 2013;14:2900.10.1021/bm400794e
  • Gestranius M, Stenius P, Kontturi E, et al. Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials. Colloids Surf A. 2017;519:60.10.1016/j.colsurfa.2016.04.025
  • Svagan AJ, Musyanovych A, Kappl M, et al. Cellulose nanofiber/nanocrystal reinforced capsules: A fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromolecules. 2014;15:1852.10.1021/bm500232 h
  • Kargar M, Fayazmanesh K, Alavi M, et al. Investigation into the potential ability of Pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. J Colloid Interface Sci. 2012;366:209.10.1016/j.jcis.2011.09.073
  • Ougiya H, Watanabe K, Morinaga Y, et al. Emulsion-stabilizing effect of bacterial cellulose. Biosci Biotech Bioch. 1997;61:1541.10.1271/bbb.61.1541
  • Fujisawa S, Togawa E, Kuroda K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion. Biomacromolecules. 2017;18:266.10.1021/acs.biomac.6b01615
  • Nypelö T, Rodriguez-Abreu C, Kolen’ko YV, et al. Microbeads and hollow microcapsules obtained by self-assembly of Pickering magneto-responsive cellulose nanocrystals. ACS Appl Mater Interfaces. 2014;6:16851.10.1021/am504260u
  • Capron I, Cathala B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules. 2013;14:291.10.1021/bm301871 k
  • Kalashnikova I, Bizot H, Bertoncini P, et al. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter. 2013;9:952.10.1039/C2SM26472B
  • Cunha AG, Mougel JB, Cathala B, et al. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir. 2014;30:9327.10.1021/la5017577
  • Kalashnikova I, Bizot H, Cathala B, et al. New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir. 2011;27:7471.10.1021/la200971f
  • Winuprasith T, Suphantharika M. Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloid. 2015;43:690.10.1016/j.foodhyd.2014.07.027
  • Wen CX, Yuan QP, Liang H, et al. Preparation and stabilization of D-limonene Pickering emulsions by cellulose nanocrystals. Carbohydr Polym. 2014;112:695.10.1016/j.carbpol.2014.06.051
  • Li Y, Yu S, Chen P, et al. Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy. 2017;34:541.10.1016/j.nanoen.2017.03.010
  • Miyamoto H, Rein DM, Ueda K, et al. Molecular dynamics simulation of cellulose-coated oil-in-water emulsions. Cellulose. 2017;24:2699.10.1007/s10570-017-1290-1
  • Sèbe G, Ham-Pichavant F, Pecastaings G. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate. Biomacromolecules. 2013;14:2937.10.1021/bm400854n
  • Zoppe JO, Venditti RA, Rojas OJ. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J Colloid Interface Sci. 2012;369:202.10.1016/j.jcis.2011.12.011
  • Tang JT, Lee MFX, Zhang W, et al. Dual responsive Pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules. 2014;15:3052.10.1021/bm500663w
  • Andresen M, Stenius P. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol. 2007;28:837.10.1080/01932690701341827
  • Xhanari K, Syverud K, Stenius P. Emulsions stabilized by microfibrillated cellulose: The effect of hydrophobization, concentration and o/w ratio. J Dispers Sci Technol. 2011;32:447.10.1080/01932691003658942
  • Lif A, Stenstad P, Syverud K, et al. Fischer-tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J Colloid Interface Sci. 2010;352:585.10.1016/j.jcis.2010.08.052
  • Lee KY, Blaker JJ, Murakami R, et al. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir. 2014;30:452.10.1021/la4032514
  • Hu Z, Ballinger S, Pelton R, et al. Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci. 2015;439:139.10.1016/j.jcis.2014.10.034
  • Oza KP, Frank SG. Multiple emulsions stabilized by colloidal microcrystalline cellulose. J Dispers Sci Technol. 1989;10:163.10.1080/01932698908943168
  • Oza KP, Frank SG. Drug release from emulsions stabilized by colloidal microcrystalline cellulose. J Dispers Sci Technol. 1989;10:187.10.1080/01932698908943169
  • Khopade AJ, Jain NK. A stable multiple emulsion system bearing isoniazid: Preparation and characterization. Drug Dev Ind Pharm. 1998;24:289.10.3109/03639049809085622
  • Abdalla A, Klein S, Mädder K. A new self-emulsifying drug delivery system (sedds) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur J Pharm Sci. 2008;35:457.10.1016/j.ejps.2008.09.006
  • Elmabrouk AB, Wim T, Dufresne A, et al. Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polym Sci. 2009;114:2946.10.1002/app.v114:5
  • Ballner D, Herzele S, Keckes J, et al. Lignocellulose nanofiber-reinforced polystyrene produced from composite microspheres obtained in suspension polymerization shows superior mechanical performance. ACS Appl Mater Interfaces. 2016;8:13520.10.1021/acsami.6b01992
  • Yan YT, Herzele S, Mahendran AR, et al. Microfibrillated lignocellulose enables the suspension-polymerisation of unsaturated polyester resin for novel composite applications. Polymers. 2016;8:2.
  • Fujisawa S, Ikeuchi T, Takeuchi M, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: Optical, thermal, and mechanical studies. Biomacromolecules. 2012;13:2188.10.1021/bm300609c
  • Kedzior SA, Marway HS, Cranston ED. Tailoring cellulose nanocrystal and surfactant behavior in miniemulsion polymerization. Macromolecules. 2017;50:2645.10.1021/acs.macromol.7b00516
  • Shams MI, Yano H. Doubly curved nanofiber-reinforced optically transparent composites. Sci Rep. 2015;5:16421.
  • Colver PJ, Bon SAF. Cellular polymer monoliths made via Pickering high internal phase emulsions. Chem Mater. 2007;19:1537.10.1021/cm0628810
  • Ikem VO, Menner A, Bismarck A. Tailoring the mechanical performance of highly permeable macroporous polymers synthesized via Pickering emulsion templating. Soft Matter. 2011;7:6571.10.1039/c1sm05272a
  • Tasset S, Cathala B, Bizot H, et al. Versatile cellular foams derived from CNC-stabilized Pickering emulsions. RSC Adv. 2014;4:893.10.1039/C3RA45883 K
  • Blaker JJ, Lee KY, Li XX, et al. Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem. 2009;11:1321.10.1039/b913740 h
  • Cervin NT, Andersson L, Ng JBS, et al. Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose. Biomacromolecules. 2013;14:503.10.1021/bm301755u
  • Li YJ, Ko FK, Hamad WY. Effects of emulsion droplet size on the structure of electrospun ultrafine biocomposite fibers with cellulose nanocrystals. Biomacromolecules. 2013;14:3801.10.1021/bm400540v