3,256
Views
32
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 977-986 | Received 26 Jul 2017, Accepted 06 Nov 2017, Published online: 04 Dec 2017

References

  • Graves C, Ebbesen SD, Jensen SH, et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nat Mater. 2015;14(2):239.
  • Iguchi F, Nagao Y, Sata N, et al. Proton concentration in 15 mol% Y-doped BaZrO3 proton conductors prepared at various temperatures. Solid State Ionics. 2011;192(1):97.10.1016/j.ssi.2010.05.046
  • Kreuer KD, Adams S, Münch W, et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. 2001;145(1):295.10.1016/S0167-2738(01)00953-5
  • Yamazaki Y, Hernandez-Sanchez R, Haile SM. High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem Mater. 2009;21(13):2755.10.1021/cm900208w
  • Perovskite oxide for solid oxide fuel cells. New York (NY): Springer; 2009.
  • Adler SB. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes. Solid State Ionics. 1998;111(1–2):125.10.1016/S0167-2738(98)00179-9
  • Chang AM, Skinner SJ, Kilner JA. Electrical properties of GdBaCo2O5+x for ITSOFC applications. Solid State Ionics. 2006;177(19–25):2009.10.1016/j.ssi.2006.05.047
  • Zhao H, Mauvy F, Lalanne C, et al. New cathode materials for ITSOFC: phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics. 2008;179(35–36):2000.10.1016/j.ssi.2008.06.019
  • Grimaud A, Bassat JM, Mauvy F, et al. Oxygen reduction reaction of PrBaCo2-xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties. J Mater Chem A. 2014;2(10):3594.10.1039/c3ta13956e
  • Grimaud A, Mauvy F, Bassat JM, et al. Hydration and transport properties of the Pr2-xSrxNiO4+δ compounds as H+-SOFC cathodes. J Electrochem Soc. 2012;159(6):B683.10.1149/2.101205jes
  • Grimaud A, Mauvy F, Bassat JM, et al. Hydration and transport properties of the Pr2-xSrxNiO4+δ compounds as H+-SOFC cathodes. J Mater Chem. 2012;22(31):16017.10.1039/c2jm31812a
  • Chauveau F, Mougin J, Mauvy F, et al. Development and operation of alternative oxygen electrode materials for hydrogen production by high temperature steam electrolysis. Int J Hydrogen Energy. 2011;36(13):7785.10.1016/j.ijhydene.2011.01.048
  • Chauveau F, Mougin J, Bassat JM, et al. A new anode material for solid oxide electrolyser: the neodymium nickelate Nd2NiO4+δ. J Power Sources. 2010;195(3):744.10.1016/j.jpowsour.2009.08.003
  • Goupil G, Delahaye T, Sala B, et al. Selection and study of basic layered cobaltites as mixed ionic-electronic conductors for proton conducting fuel cells. Solid State Ionics. 2014;263:15.10.1016/j.ssi.2014.04.022
  • Taillades G, Pers P, Batocchi P, et al. Advanced electrodes for intermediate temperature proton conducting fuel cell. Solid Oxide Fuel Cells 13 (Sofc-Xiii). 2013;57(1):1289.
  • Goupil G, Delahaye T, Gauthier G, et al. Stability study of possible air electrode materials for proton conducting electrochemical cells. Solid State Ionics. 2012;209:36.10.1016/j.ssi.2012.01.006
  • Lin Y, Ran R, Zhang CM, et al. Performance of PrBaCo2O5+δ as a proton-conducting solid-oxide fuel cell cathode. J Phys Chem A. 2010;114(11):3764.10.1021/jp9042599
  • Bi L, Tao ZT, Peng RR, et al. Research progress in the electrolyte materials for protonic ceramic membrane fuel cells. J Inorg Mater. 2010;25(1):1.
  • Zohourian R, Merkle R, Maier J. Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3-δ and comparison to protonic electrolyte materials. Solid State Ionics. 2017;299:64.10.1016/j.ssi.2016.09.012
  • Han D, Okumura Y, Nose Y, et al. Synthesis of La1−xSrxSc1−yFeyO3−δ (LSSF) and measurement of water content in LSSF, LSCF and LSC hydrated in wet artificial air at 300 °C. Solid State Ionics. 2010;181(35):1601.10.1016/j.ssi.2010.09.009
  • Poetzsch D, Merkle R, Maier J. Stoichiometry variation in materials with three mobile carriers-thermodynamics and transport kinetics exemplified for protons, oxygen vacancies, and holes. Adv Funct Mater. 2015;25(10):1542.10.1002/adfm.201402212
  • DeSouza RA, Kilner JA, Jeynes C. The application of secondary ion mass spectrometry (SIMS) to the study of high temperature proton conductors (HTPC). Solid State Ionics. 1997;97(1–4):409.10.1016/S0167-2738(97)00038-6
  • Strandbakke R, Cherepanov VA, Zuev AY, et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics. 2015;278:120.10.1016/j.ssi.2015.05.014
  • Adler SB, Lane JA, Steele BCH. Electrode kinetics of porous mixed-conducting oxygen electrodes. J Electrochem Soc. 1996;143(11):3554.10.1149/1.1837252
  • Kim J, Sengodan S, Kwon G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem. 2014;7(10):2811.10.1002/cssc.201402351
  • Coulaud E, Dezanneau G, Geneste G. Hydration, oxidation, and reduction of GdBaCo2O5.5 from first-principles. J Mater Chem A. 2015;3(47):23917.10.1039/C5TA05388A
  • Bahout M, Pramana SS, Hanlon JM, et al. Stability of NdBaCo2-xMnxO5+δ (x=0, 0.5) layered perovskites under humid conditions investigated by high-temperature in situ neutron powder diffraction. J Mater Chem A. 2015;3(30):15420.10.1039/C5TA02776D
  • Tellez H, Druce J, Kilner JA, et al. Relating surface chemistry and oxygen surface exchange in LnBaCo2O5+δ air electrodes. Faraday Discuss. 2015;182:145.10.1039/C5FD00027 K
  • Zapata J, Burriel M, Garcia P, et al. Anisotropic 18O tracer diffusion in epitaxial films of GdBaCo2O5+δ cathode material with different orientations. J Mater Chem A. 2013;1(25):7408.10.1039/c3ta10749c
  • Chen Y-C, Yashima M, Peña-Martínez J, et al. Experimental visualization of the diffusional pathway of oxide ions in a layered perovskite-type cobaltite PrBaCo2O5+δ. Chem Mater. 2013;25(13):2638.10.1021/cm4010618
  • Seymour ID, Tarancon A, Chroneos A, et al. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics. 2012;216:41.10.1016/j.ssi.2011.09.002
  • Burriel M, Pena-Martinez J, Chater RJ, et al. Anisotropic oxygen ion diffusion in layered PrBaCo2O5+δ. Chem Mater. 2012;24(3):613.10.1021/cm203502s
  • Tarancon A, Chroneos A, Parfitt D, et al. Oxygen diffusion in ordered/disordered double perovskites. ECS Trans. 2011;35(1):1151.10.1149/1.3570097
  • Tarancon A, Skinner SJ, Chater RJ, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem. 2007;17(30):3175.10.1039/b704320a
  • Ananyev MV, Eremin VA, Tsvetkov DS, et al. Oxygen isotope exchange and diffusion in LnBaCo2O6−δ (Ln=Pr, Sm, Gd) with double perovskite structure. Solid State Ionics. 2017;304(Supplement C):96.10.1016/j.ssi.2017.03.022
  • Frison R, Portier S, Martin M, et al. Study of oxygen tracer diffusion in PrBaCo2O5.74 by SIMS. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms. 2012;273:142.
  • Goupil G. Elaboration et caractérisation de matériaux d’anode à conduction mixte protonique/électronique pour lélectrolyse de la vapeur deau à haute température, Institut Polytechnique de Grenoble. Universite de Grenoble; 2011. p. 306.
  • Sharp MD, Cooke SN, Kilner JA. Cathode materials for low temperature protonic oxide fuel cells. 10th European SOFC Forum; Luzern: European Fuel Cell Forum; 2012. p. 16–24, Chapter 16. ISBN 978-3-905592-18-4.
  • Cooper SJ, Niania M, Hoffmann F, et al. Back-exchange: a novel approach to quantifying oxygen diffusion and surface exchange in ambient atmospheres. Phys Chem Chem Phys. 2017;19(19):12199.10.1039/C7CP01317E
  • Tellez H, Druce J, Hong JE, et al. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI). Anal Chem. 2015;87(5):2907.10.1021/ac504409x
  • Crank J. The mathematics of diffusion. Oxford: Clarendon Press; 1975.
  • Cooper SJ. TraceX. Available from: https://sourceforge.net/projects/trace-x/
  • Sakai N, Yamaji K, Xiong YP, et al. Interaction between water and ceria-zirconia-yttria solid solutions. J Electroceram. 2004;13(1–3):677.10.1007/s10832-004-5175-y
  • Sakai N, Yamaji K, Horita T, et al. Significant effect of water on surface reaction and related electrochemical properties of mixed conducting oxides. Solid State Ionics. 2004;175(1–4):387.10.1016/j.ssi.2003.12.046
  • Sakai N, Yamaji K, Horita T, et al. Effect of water on oxygen transport properties on electrolyte surface in SOFCs. J Electrochem Soc. 2003;150(6):A689.10.1149/1.1568938
  • Wachsman ED, Huang YL, Pellegrinelli C, et al. Towards a fundamental understanding of the cathode degradation mechanisms. Ionic Mixed Conduct Ceram 9. 2014;61(1):47.
  • Limbeck A, Rupp GM, Kubicek M, et al. Dynamic etching of soluble surface layers with on-line inductively coupled plasma mass spectrometry detection - a novel approach for determination of complex metal oxide surface cation stoichiometry. J Anal At Spectrom. 2016;31(8):1638.10.1039/C6JA00154H
  • Burriel M, Tellez H, Chater RJ, et al. Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J Phys Chem C. 2016;120(32):17927.10.1021/acs.jpcc.6b05666
  • Wu J, Pramana SS, Skinner SJ, et al. Why Ni is absent from the surface of La2NiO4+δ? J Mater Chem A. 2015;3(47):23760.10.1039/C5TA03759 J
  • Rupp GM, Tellez H, Druce J, et al. Surface chemistry of La0.6Sr0.4CoO3-δ thin films and its impact on the oxygen surface exchange resistance. J Mater Chem A. 2015;3(45):22759.10.1039/C5TA05279C
  • Chen Y, Tellez H, Burriel M, et al. Segregated chemistry and structure on (001) and (100) surfaces of (La1-xSrx)(2)CoO4 override the crystal anisotropy in oxygen exchange kinetics. Chem Mater. 2015;27(15):5436.10.1021/acs.chemmater.5b02292
  • Druce J, Tellez H, Burriel M, et al. Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ Sci. 2014;7(11):3593.10.1039/C4EE01497A
  • Druce J, Ishihara T, Kilner J. Surface composition of perovskite-type materials studied by Low Energy Ion Scattering (LEIS). Solid State Ionics. 2014;262:893.10.1016/j.ssi.2013.09.010
  • Kilner JA, Sharp M, Cook S, et al. LEIS of oxide air electrode surfaces. 10th European Fuel Cell Forum; Lucerne, Switzerland: European Fuel Cell Forum; 2012. p. B0504.
  • Berenov A, Atkinson A, Kilner J, et al. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ. Solid State Ionics. 2014;268(Part A):102.10.1016/j.ssi.2014.09.031
  • Bucher E, Egger A, Caraman GB, et al. Stability of the SOFC cathode material (Ba,Sr)(Co,Fe)O3-δ in CO2-containing atmospheres. J Electrochem Soc. 2008;155(11):B1218.10.1149/1.2981024
  • Slodczyk A, Sharp MD, Upasen S, et al. Combined bulk and surface analysis of the BaCe0.5Zr0.3Y0.16Zn0.04O3-δ (BCZYZ) ceramic proton-conducting electrolyte. Solid State Ionics. 2014;262:870.10.1016/j.ssi.2013.12.044
  • Slodczyk A, Zaafrani O, Sharp MD, et al. Testing the chemical/structural stability of proton conducting perovskite ceramic membranes by in Situ/ex Situ autoclave raman microscopy. Membranes. 2013;3(4):311.10.3390/membranes3040311
  • Duan CC, Tong JH, Shang M, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science. 2015;349(6254):1321.10.1126/science.aab3987
  • Poetzsch D, Merkle R, Maier J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys Chem Chem Phys. 2014;16(31):16446.10.1039/C4CP00459K