3,806
Views
65
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity

Pages 31-43 | Received 26 May 2017, Accepted 02 Dec 2017, Published online: 12 Jan 2018

References

  • Nirmal M , Dabbousi BO , Bawendi MG , et al . Fluorescence intermittency in single cadmium selenide nanocrystals. Nature. 1996;383:802–804.10.1038/383802a0
  • McDonald SA , Konstantatos G , Zhang S , et al . Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater. 2005;4:138–142.10.1038/nmat1299
  • Nozik AJ . Quantum dot solar cells. Physica E. 2002;14:115–120.10.1016/S1386-9477(02)00374-0
  • Koh YK , Cao Y , Cahill DG , et al . Heat-transport mechanisms in superlattices. Adv Funct Mater. 2009;19:610–615.10.1002/adfm.v19:4
  • Yu JK , Mitrovic S , Tham D , et al . Reduction of thermal conductivity in phononic nanomesh structures. Nat Nanotechnol. 2010;5:718–721.10.1038/nnano.2010.149
  • Ravichandran J , Yadav AK , Cheaito R , et al . Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat Mater. 2014;13:168–172.
  • Yamasaka S , Nakamura Y , Ueda T , et al . Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Sci Rep. 2015;5:14490.10.1038/srep14490
  • Maldovan M . Phonon wave interference and thermal bandgap materials. Nat Mater. 2015;14:667–674.10.1038/nmat4308
  • Snyder GJ , Toberer ES . Complex thermoelectric materials. Nat Mater. 2008;7:105–114.10.1038/nmat2090
  • Dismukes JP , Ekstrom L , Steigmeier EF , et al . Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300 °K. J Appl Phys. 1964;35:2899–2907.
  • Bux SK , Blair RG , Gogna PK , et al . Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater. 2009;19:2445–2452.10.1002/adfm.v19:15
  • Biswas K , He J , Blum ID , et al . High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489:414–418.10.1038/nature11439
  • Hochbaum AI , Chen R , Delgado RD , et al . Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008;451:163–167.10.1038/nature06381
  • Boukai AI , Bunimovich Y , Tahir-Kheli J , et al . Silicon nanowires as efficient thermoelectric materials. Nature. 2008;451:168–171.10.1038/nature06458
  • Wang XW , Lee H , Lan YC , et al . Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett. 2008;93:193121.10.1063/1.3027060
  • Venkatasubramanian R , Siivola E , Colpitts T , et al . Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597–602.10.1038/35098012
  • Liu W , Yan X , Chen G , et al . Recent advances in thermoelectric nanocomposites. Nano Energy. 2012;1:42–56.10.1016/j.nanoen.2011.10.001
  • Alam H , Ramakrishna S . A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy. 2013;2:190–212.10.1016/j.nanoen.2012.10.005
  • Ishibe T , Tomeda A , Watanabe K , et al . Embedded-ZnO nanowire structure for high-performance transparent thermoelectric materials. J Electron Mater. 2017;46:3020–3024.10.1007/s11664-016-5111-3
  • Taniguchi T , Sakane S , Aoki S , et al . Thermoelectric properties of epitaxial β-FeSi2 thin films on Si(1 1 1) and approach for their enhancement. J Electron Mater. 2017;46:3235–3241.10.1007/s11664-016-4997-0
  • Ueda T , Sakane S , Ishibe T , et al . Fabrication of carrier-doped Si nanoarchitecture for thermoelectric material by ultrathin SiO2 film technique. J Electron Mater. 2016;45:1914–1920.10.1007/s11664-015-4294-3
  • Dresselhaus MS , Chen G , Tang MY , et al . New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19:1043–1053.10.1002/(ISSN)1521-4095
  • Hicks LD , Dresselhaus MS . Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B. 1993;47:12727–12731.10.1103/PhysRevB.47.12727
  • Morin FJ , Maita JP . Electrical properties of silicon containing arsenic and boron. Phys Rev. 1954;96:28–35.10.1103/PhysRev.96.28
  • Geballe TH , Hull GW . Seebeck effect in silicon. Phys Rev. 1955;98:940–947.10.1103/PhysRev.98.940
  • Ohishi Y , Xie J , Miyazaki Y , et al . Thermoelectric properties of heavily boron- and phosphorus-doped silicon. Jpn J Appl Phys. 2015;54:071301.10.7567/JJAP.54.071301
  • Kwon SD , Ju BK , Yoon SJ , et al . Fabrication of bismuth telluride-based alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. J Electron Mater. 2009;38(7):920–924.10.1007/s11664-009-0704-8
  • Fan P , Zheng ZH , Cai ZK , et al . The high performance of a thin film thermoelectric generator with heat flow running parallel to film surface. Appl Phys Lett. 2013;102:033904.10.1063/1.4788817
  • Fan P , Zheng ZH , Li YZ , et al . Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials. Appl Phys Lett. 2015;106:073901.10.1063/1.4909531
  • Nakamura Y , Isogawa M , Ueda T , et al . Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy. 2015;12:845–851.10.1016/j.nanoen.2014.11.029
  • Yamasaka S , Watanabe K , Sakane S , et al . Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials. Sci Rep. 2016;6:22838.10.1038/srep22838
  • Watanabe H , Kato K , Uda T , et al . Kinetics of initial layer-by-layer oxidation of Si(0 0 1) surfaces. Phys Rev Lett. 1998;80:345–348.
  • Miyata N , Watanabe H , Ichikawa M . Thermal decomposition of an ultrathin Si oxide layer around a Si(0 0 1)-(2×1) window. Phys Rev Lett. 2000;84:1043–1046.
  • Shklyaev AA , Shibata M , Ichikawa M . High-density ultrasmall epitaxial Ge islands on Si(1 1 1) surfaces with a SiO2 coverage. Phys Rev B. 2000;62:1540–1543.10.1103/PhysRevB.62.1540
  • Nakamura Y , Nagatomi Y , Sugie K , et al . Formation of ultrahigh density Ge nanodots on oxidized Ge/Si(1 1 1) surfaces. J Appl Phys. 2004;95:5014–5018.
  • Nakamura Y , Watanabe K , Fukuzawa Y , et al . Observation of the quantum-confinement effect in individual Ge nanocrystals on oxidized Si substrates using scanning tunneling spectroscopy. Appl Phys Lett. 2005;87:133119.10.1063/1.2067711
  • Chen P , Zhang JJ , Feser JP , et al . Thermal transport through short-period SiGe nanodot superlattices. J Appl Phys. 2014;115:044312.10.1063/1.4863115
  • Yang Z , Shi Y , Liu J , et al . Optical properties of Ge/Si quantum dot superlattices. Mater Lett. 2004;58:3765–3768.10.1016/j.matlet.2004.08.016
  • Lee ML , Venkatasubramanian R . Effect of nanodot areal density and period on thermal conductivity in SiGe/Si nanodot superlattices. Appl Phys Lett. 2008;92:053112.10.1063/1.2842388
  • Pernot G , Stoffel M , Savic I , et al . Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater. 2010;9:491–495.10.1038/nmat2752
  • Chen P , Katcho NA , Feser JP , et al . Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys Rev Lett. 2013;111:115901.
  • Nakamura Y , Masada A , Ichikawa M . Quantum-confinement effect in individual Ge1−xSnx quantum dots on Si(1 1 1) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy. Appl Phys Lett. 2007;91:013109.10.1063/1.2753737
  • Nakamura Y , Sugimoto T , Ichikawa M . Formation and optical properties of GaSb quantum dots epitaxially grown on Si substrates using an ultrathin SiO2 film technique. J Appl Phys. 2009;105:014308.10.1063/1.3055211
  • Nakamura Y , Nagadomi Y , Cho SP , et al . Formation of strained iron silicide nanodots by Fe deposition on Si nanodots on oxidized Si(1 1 1) surfaces. Phys Rev B. 2005;72:075404.10.1103/PhysRevB.72.075404
  • Nakamura Y , Nagadomi Y , Cho SP , et al. Formation of ultrahigh density and ultrasmall coherent β-FeSi2 nanodots on Si(1 1 1) substrates using Si and Fe codeposition method. J Appl Phys 2006;100:044313.
  • Sakane S , Isogawa M , Watanabe K , et al . Epitaxial multilayers of β-FeSi2 nanodots/Si for Si-based nanostructured electronic materials. J Vac Sci Technol A. 2017;35:041402.10.1116/1.4984107
  • Nakamura Y , Murayama A , Watanabe R , et al . Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates. Nanotechnology. 2010;21:095305.
  • Nakamura Y , Ichikawa M , Watanabe K , et al . Quantum fluctuation of tunneling current in individual Ge quantum dots induced by a single-electron transfer. Appl Phys Lett. 2007;90:153104.10.1063/1.2720756
  • Nakamura Y , Murayama A , Ichikawa M . Epitaxial growth of high quality Ge films on Si(0 0 1) substrates by nanocontact epitaxy. Cryst Growth Des. 2011;11:3301–3305.10.1021/cg200609u
  • Nakamura Y , Miwa T , Ichikawa M . Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds. Nanotechnology. 2011;22:265301.10.1088/0957-4484/22/26/265301
  • Okuhata R , Watanabe K , Ikeuchi S , et al . Thermal conductivity measurement of thermoelectric thin films by a versatility-enhanced 2ω method. J Electron Mater. 2017;46:3089–3096.10.1007/s11664-016-5170-5
  • Rosencwaig A , Opsal J , Smith WL , et al . Detection of thermal waves through optical reflectance. Appl Phys Lett. 1985;46:1013–1015.10.1063/1.95794
  • Kato R , Hatta I . Thermal conductivity measurement of thermally-oxidized SiO2 films on a silicon wafer using a thermo-reflectance technique. Int J Thermophys. 2005;26:179–190.10.1007/s10765-005-2365-z
  • Kato R , Hatta I . Thermal conductivity and interfacial thermal resistance: measurements of thermally oxidized SiO2 films on a silicon wafer using a thermo-reflectance technique. Int J Thermophys. 2008;29:2062–2071.10.1007/s10765-008-0536-4
  • Zhan T , Xu Y , Goto M , et al . Phonons with long mean free paths in a-Si and a-Ge. Appl Phys Lett. 2014;104:071911.10.1063/1.4866799
  • Swartz ET , Pohl RO . Thermal resistance at interfaces. Appl Phys Lett. 1987;51:2200–2202.10.1063/1.98939
  • Hopkins PE , Norris PM . Effects of joint vibrational states on thermal boundary conductance. Nanoscale Microscale Thermophys Eng. 2007;11:247–257.10.1080/15567260701715297
  • Reddy P , Castelino K , Majumdar A . Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion. Appl Phys Lett. 2005;87:211908.10.1063/1.2133890
  • Dames C , Chen G . Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys. 2004;95:682–693.10.1063/1.1631734
  • Dechaumphai E , Chen R . Thermal transport in phononic crystals: the role of zone folding effect. J Appl Phys. 2012;111:073508.10.1063/1.3699056
  • Faraci G , Gibilisco S , Russo P , et al . Modified Raman confinement model for Si nanocrystals. Phys Rev B. 2006;73:033307.10.1103/PhysRevB.73.033307
  • Joshi G , Lee G , Lan Y , et al . Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008;8(12):4670–4674.10.1021/nl8026795
  • Kim W , Majumdar A . Phonon scattering cross section of polydispersed spherical nanoparticles. J Appl Phys. 2006;99:084306.10.1063/1.2188251
  • Yang F , Dames C . Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys Rev B. 2013;87:035437.10.1103/PhysRevB.87.035437
  • Regner KT , Sellan DP , Su Z , et al . Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun. 2013;4:1640.10.1038/ncomms2630
  • Hu Y , Zeng L , Minnich AJ , et al . Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat Nanotechnol. 2015;10:701–706.10.1038/nnano.2015.109
  • Schroder DK . Semiconductor material and device characterization. 3rd ed. Hoboken (NJ): Wiley-IEEE Press; 2006.
  • Hobart KD , Godbey DJ , Thompson PE . Post-growth annealing of low temperature-grown Sb-doped Si molecular beam epitaxial films. Appl Phys Lett. 1992;61:76–78.10.1063/1.107618
  • Gossmann HJ , Unterwald FC , Luftman HS . Doping of Si thin films by low-temperature molecular beam epitaxy. J Appl Phys. 1993;73:8237–8241.10.1063/1.353441
  • Fukuda J , Kambara M , Yoshida T . Low temperature silicon epitaxy from trichlorosilane via mesoplasma chemical vapor deposition. Thin Solid Films. 2011;519:6759–6762.10.1016/j.tsf.2011.01.216
  • Yang B , Liu WL , Liu JL , et al . Measurements of anisotropic thermoelectric properties in superlattices. Appl Phys Lett. 2002;81:3588–3590.10.1063/1.1515876
  • Ma Y , Hao Q , Poudel B , et al . Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 2008;8(8):2580–2584.10.1021/nl8009928