4,711
Views
32
CrossRef citations to date
0
Altmetric
Focus on New Materials Science and Element Strategy

Chemical modification of group IV graphene analogs

, , ORCID Icon & ORCID Icon
Pages 76-100 | Received 16 Oct 2017, Accepted 25 Dec 2017, Published online: 31 Jan 2018

References

  • Novoselov KS , Geim AK , Morozov SV , et al . Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Guzmán-Verri GG , Voon LCLY . Electronic structure of silicon-based nanostructures. Phys Rev B. 2007;76:075131.10.1103/PhysRevB.76.075131
  • Sahaf H , Masson L , Léandri C , et al . Formation of a one-dimensional grating at the molecular scale by self-assembly of straight silicon nanowires. Appl Phys Lett. 2007;90:263110.10.1063/1.2752125
  • De Padova P , Quaresima C , Perfetti P , et al . Growth of straight, atomically perfect, highly metallic silicon nanowires with chiral asymmetry. Nano Lett. 2008;8:271–275.10.1021/nl072591y
  • De Padova P , Quaresima C , Ottaviani C , et al . Evidence of graphene-like electronic signature in silicene nanoribbons. Appl Phys Lett. 2010;96:261905.10.1063/1.3459143
  • Kara A , Léandri C , Dávila M , et al . Physics of silicene stripes. J Supercond Novel Magn. 2009;22:259–263.10.1007/s10948-008-0427-8
  • De Padova P , Quaresima C , Olivieri B , et al . sp2-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl Phys Lett. 2011;98:081909.10.1063/1.3557073
  • Takeda K , Shiraishi K . Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B. 1994;50:14916–14922.10.1103/PhysRevB.50.14916
  • Bianconi PA , Weidman TW . Poly(n-hexylsilyne): synthesis and properties of the first alkyl silicon [RSi]n network polymer. J Am Chem Soc. 1988;110:2342–2344.10.1021/ja00215a077
  • Bianconi PA , Schilling FC , Weidman TW . Ultrasound-mediated reductive condensation synthesis of silicon-silicon-bonded network polymers. Macromolecules. 1989;22:1697–1704.10.1021/ma00194a033
  • Furukawa K , Fujino M , Matsumoto N . Optical properties of silicon network polymers. Macromolecules. 1990;23:3423–3426.
  • Matsumoto H , Miyamoto H , Kojima N , et al . The 1st Bicyclo[2.2.0]hexasilane system – synthesis of decaisopropyl hexasilabicyclo[2.2.0] hexane. J Chem Soc Chem Commun. 1987;17:1316–1317.10.1039/c39870001316
  • Lalmi B , Oughaddou H , Enriquez H , et al . Epitaxial growth of a silicene sheet. Appl Phys Lett. 2010;97:223109.10.1063/1.3524215
  • Lin C-L , Arafune R , Kawahara K , et al . Structure of silicene grown on Ag(111). Appl Phys Express. 2012;5:045802.10.1143/APEX.5.045802
  • Jamgotchian H , Colignon Y , Hamzaoui N , et al . Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature. J Phys Condens Matter. 2012;24:172001.10.1088/0953-8984/24/17/172001
  • Feng B , Ding Z , Meng S , et al . Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012;12:3507–3511.10.1021/nl301047 g
  • Arafune R , Lin C-L , Kawahara K , et al . Structural transition of silicene on Ag(111). Surf Sci. 2013;608:297–300.10.1016/j.susc.2012.10.022
  • Lin C-L , Arafune R , Kawahara K , et al . Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys Rev Lett. 2013;110:076801.10.1103/PhysRevLett.110.076801
  • Mahatha SK , Moras P , Bellini V , et al . Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys Rev B. 2014;89:201416.10.1103/PhysRevB.89.201416
  • Chen L , Li H , Feng B , et al . Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys Rev Lett. 2013;110:85504.10.1103/PhysRevLett.110.085504
  • De Padova P , Vogt P , Resta A , et al . Evidence of Dirac fermions in multilayer silicene. Appl Phys Lett. 2013;102:163106.
  • Arafune R , Lin C-L , Nagao R , et al . Comment on ‘evidence for dirac fermions in a honeycomb lattice based on silicon’. Phys Rev Lett. 2013;110:229701.10.1103/PhysRevLett.110.229701
  • Shirai T , Shirasawa T , Hirahara T , et al . Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface. Phys Rev B. 2014;89:241403.10.1103/PhysRevB.89.241403
  • Mannix AJ , Kiraly B , Fisher BL , et al . Silicon growth at the two-dimensional limit on Ag(111). ACS Nano. 2014;8:7538–7547.10.1021/nn503000w
  • Lin C-L , Hagino T , Ito Y , et al . Spectroscopic identification of Ag-terminated ‘multilayer silicene’ grown on Ag(111). J Phys Chem C. 2016;120:6689.10.1021/acs.jpcc.6b00717
  • Fleurence A , Friedlein R , Ozaki T , et al . Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett. 2012;108:245501.10.1103/PhysRevLett.108.245501
  • Meng L , Wang Y , Zhang L , et al . Buckled silicene formation on Ir(111). Nano Lett. 2013;13:685.10.1021/nl304347w
  • Chiappe D , Scalise E , Cinquanta E , et al . Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv Mater. 2014;26:2096–690.10.1002/adma.201304783
  • Qiu J , Fu H , Xu Y , et al . Ordered and reversible hydrogenation of silicene. Phys Rev Lett. 2015;114:126101.10.1103/PhysRevLett.114.126101
  • Li W , Sheng S , Chen J , et al . Ordered chlorinated monolayer silicene structures. Phys Rev B. 2016;93:155410.10.1103/PhysRevB.93.155410
  • Tao L , Cinquanta E , Chiappe D , et al . Silicene field-effect transistors operating at room temperature. Nat Nanotechnol. 2015;10:227–231.10.1038/nnano.2014.325
  • Zhu Y , Murali S , Stoller MD , et al . Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332:1537–1541.10.1126/science.1200770
  • Yoo E , Kim J , Hosono E , et al . Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8:2277–2282.10.1021/nl800957b
  • Kim KS , Zhao Y , Jang H , et al . Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710.10.1038/nature07719
  • Bae S , Kim H , Lee Y , et al . Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5:574–578.10.1038/nnano.2010.132
  • Bonaccorso F , Sun Z , Hasan T , et al . Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.10.1038/nphoton.2010.186
  • Du Y , Guo S . Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale. 2016;8:2532–2543.10.1039/C5NR07579C
  • Wang Z , Zeng H , Sun L . Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J Mater Chem C. 2015;3:1157–1165.10.1039/C4TC02536A
  • Zhou S , Xu H , Gan W , et al . Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv. 2016;6:110775–110788.10.1039/C6RA24349E
  • Kozák O , Sudolská M , Pramanik G , et al . Photoluminescent carbon nanostructures. Chem Mater. 2016;28:4085–4128.10.1021/acs.chemmater.6b01372
  • Zheng XT , Ananthanarayanan A , Luo KQ , et al . Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications . Small. 2015;11:1620–1636.10.1002/smll.v11.14
  • Pan D , Zhang J , Li Z , et al . Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22:734–738.10.1002/adma.v22:6
  • Tetsuka H , Asahi R , Nagoya A , et al . Optically tunable amino-functionalized graphene quantum dots. Adv Mater. 2012;24:5333–5338.10.1002/adma.201201930
  • Liu Q , Guo B , Rao Z , et al . Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13:2436–2441.10.1021/nl400368v
  • Lu J , Yang J-X , Wang J , et al . One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano. 2009;3:2367–2375.10.1021/nn900546b
  • Liu F , Jang M-H , Ha HD , et al . Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv Mater. 2013;25:3657–3662.10.1002/adma.v25.27
  • Peng J , Gao W , Gupta BK , et al . Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12:844–849.10.1021/nl2038979
  • Lu J , Yeo PSE , Gan CK , et al . Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol. 2011;6:247–252.10.1038/nnano.2011.30
  • Li L-L , Ji J , Fei R , et al . A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22:2971–2979.10.1002/adfm.v22.14
  • Yan X , Cui X , Li LS . Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc. 2010;132:5944–5945.10.1021/ja1009376
  • Yan X , Cui X , Li B , et al . Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010;10:1869–1873.10.1021/nl101060 h
  • Dong Y , Shao J , Chen C , et al . Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50:4738–4743.10.1016/j.carbon.2012.06.002
  • Eda G , Lin Y-Y , Mattevi C , et al . Blue photoluminescence from chemically derived graphene oxide. Adv Mater. 2010;22:505–509.10.1002/adma.v22:4
  • Sk MA , Ananthanarayanan A , Huang L , et al . Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C. 2014;2:6954–6960.10.1039/C4TC01191 K
  • Ye R , Xiang C , Lin J , et al . Coal as an abundant source of graphene quantum dots. Nat Commun. 2013;4:4293.
  • Kim S , Hwang SW , Kim M-K , et al . Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012;6:8203–8208.10.1021/nn302878r
  • Tetsuka H , Nagoya A , Asahi R . Highly luminescent flexible amino-functionalized graphene quantum dots@cellulose nanofiber–clay hybrids for white-light emitting diodes. J Mater Chem C. 2015;3:3536–3541.10.1039/C5TC00250H
  • Zhang M , Bai L , Shang W , et al . Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem. 2012;22:7461–7467.10.1039/c2jm16835a
  • Zhu S , Zhang J , Tang S , et al . Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Func Mater. 2012;22:4732–4740.10.1002/adfm.v22.22
  • Qian Z , Ma J , Shan X , et al . Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Qdv. 2013;3:14571–14579.
  • Zhu S , Zhang J , Liu X , et al . Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2012;2:2717–2720.10.1039/c2ra20182 h
  • Tetsuka H , Nagoya A , Fukusumi T , et al . Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater. 2016;28:4632–4638.10.1002/adma.v28.23
  • Zhang Q , Jie J , Diao S , et al . Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano. 2015;9:1561–1570.10.1021/acsnano.5b00437
  • Tetsuka H . 2D/0D graphene hybrids for visible-blind flexible UV photodetectors. Sci Rep. 2017;7:5544.10.1038/s41598-017-05981-y
  • Kim CO , Hwang SW , Kim S , et al . High-performance graphene-quantum-dot photodetectors. Sci Rep. 2014;4:5603.
  • Tetsuka H , Nagoya A , Tamura S-H . Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets. Nanoscale. 2016;8:19677–19683.10.1039/C6NR07707B
  • Gupta V , Chaudhary N , Srivastava R , et al . Luminescent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc. 2011;133:9960–9963.10.1021/ja2036749
  • Li Y , Hu Y , Zhao Y , et al . An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater. 2011;23:776–780.10.1002/adma.201003819
  • Kwon W , Kim Y-H , Lee C-L , et al . Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014;14:1306–1311.10.1021/nl404281 h
  • Song SH , Jang M-H , Chung J , et al . Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv Opt Mater. 2014;2:1016–1023.10.1002/adom.201400184
  • Son DI , Kwon BW , Park DH , et al . Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol. 2012;7:465–471.10.1038/nnano.2012.71
  • Luk CM , Tang LB , Zhang WF , et al . An efficient and stable fluorescent graphene quantum dot–agar composite as a converting material in white light emitting diodes. J Mater Chem. 2012;22:22378–22381.10.1039/c2jm35305a
  • Nakano H , Yamanaka S . Structural study of the solid solutions in a CaSi2-LaSi2 System. J Solid State Chem. 1994;108:260–266.10.1006/jssc.1994.1041
  • Yaokawa R , Nakano H , Ohashi M . Growth of CaSi2 single-phase polycrystalline ingots using the phase relationship between CaSi2 and associated phases. Acta Mater. 2014;81:41–49.10.1016/j.actamat.2014.08.009
  • Vogg G , Brandt MS , Stutzmann M . Kinetics of the topotactic formation of siloxene. Chem Mater. 2003;15:910–915.10.1021/cm020939e
  • Dahn JR , Way BM , Fuller E , et al . Structure of siloxene and layered polysilane (Si6H6). Phys Rev B. 1993;48:17872–17877.10.1103/PhysRevB.48.17872
  • Yamanaka S , Matsu-ura H , Ishikawa M . New deintercalation reaction of calcium from calcium disilicide. Synthesis of layered polysilane. Mater Res Bull. 1996;31:307–316.10.1016/0025-5408(95)00195-6
  • Noguchi E , Sugawara K , Yaokawa R , et al . Direct observation of Dirac cone in multilayer silicene intercalation compound CaSi2 . Adv Mater. 2015;27:856–860.10.1002/adma.v27.5
  • Nakano H , Mitsuoka T , Harada M , et al . Soft synthesis of single-crystal silicon monolayer sheets. Angew Chem Int Ed. 2006;45:6303–6306.10.1002/(ISSN)1521-3773
  • Nakano H , Ikuno T . Soft chemical synthesis of silicon nanosheets and their applications. Appl Phys Rev. 2016;3:040803.10.1063/1.4952442
  • Okamoto H , Sugiyama Y , Nakano H . Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem Eur J. 2011;17(36):9864–9887.10.1002/chem.v17.36
  • Okamoto H , Sugiyama Y , Nakanishi K . Surface modification of layered polysilane with n-alkylamines, alpha, omega-diaminoalkanes, and omega-aminocarboxylic acids. Chem Mater. 2015;27:1292–1298.10.1021/cm5042869
  • Okamoto H , Kumai Y , Sugiyama Y , et al . Silicon nanosheets and their self-assembled regular stacking structure. J Am Chem Soc. 2010;132:2710–2718.10.1021/ja908827z
  • Ohshita J , Yamamoto K , Tanaka D , et al . Preparation and photocurrent generation of silicon nanosheets with aromatic substituents on the surface. J Phys Chem C. 2016;120:10991–10996.10.1021/acs.jpcc.6b03014
  • Sugiyama Y , Okamoto H , Mitsuoka T , et al . Synthesis and optical properties of monolayer organosilicon nanosheets. J Am Chem Soc. 2010;132:5946–5947.10.1021/ja100919d
  • Nakano H , Nakano M , Nakanishi K , et al . Preparation of alkyl-modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6). J Am Chem Soc. 2012;134:5452–5455.10.1021/ja212086n
  • Helbich T , Lyuleeva A , Marx P , et al . Lewis acid induced functionalization of photoluminescent 2D silicon nanosheets for the fabrication of functional hybrid films. Adv Funct Mater. 2017;27:1606764.10.1002/adfm.201606764
  • Klimes J , Bowler DR , Michaelides A . Chemical accuracy for the van der Waals density functional. J Phys: Condens Matter. 2010;22:022201.
  • Román-Pérez G , Soler JM . Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett. 2009;103:096102.10.1103/PhysRevLett.103.096102
  • Dion M , Rydberg H , Schröder E , et al . Van der Waals density functional for general geometries. Phys Rev Lett. 2004;92:246401.10.1103/PhysRevLett.92.246401
  • Lee K , Murray ÉD , Kong LZ , et al . Higher-accuracy van der Waals density functional. Phys Rev B. 2010;82:081101.10.1103/PhysRevB.82.081101
  • Grimme S . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799.10.1002/(ISSN)1096-987X
  • Zhao Y , Truhlar DG . A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101.10.1063/1.2370993
  • Zhao Y , Truhlar D . The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241.10.1007/s00214-007-0310-x
  • Heyd J , Scuseria GE . Assessment and validation of a screened Coulomb hybrid density functional. J Chem Phys. 2004;120:7274–7280.10.1063/1.1668634
  • Barone V , Scuseria GE . Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: Beyond the local density approximation. J Chem Phys. 2004;121:10376–10379.10.1063/1.1810132
  • Spencer MJS , Morishita T . (eds.) Silicene: Structure, Properties and Applications. Springer International; 2016.10.1007/978-3-319-28344-9
  • Voon LCLY , Zhu J , Schwingenschlogl U . Silicene: Recent theoretical advances. Appl. Phys. Rev. 2017;3;040802.
  • Cahangirov S , Topsakal M , Aktürk E , et al . Two-and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett. 2009;102:236804.10.1103/PhysRevLett.102.236804
  • Liu C-C , Feng W , Yao Y . Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett. 2011;107:07680.
  • Rouhi S . Fracture behavior of hydrogen-functionalized silicene nanosheets by molecular dynamics simulations. Comput Mater Sci. 2017;131:275–285.10.1016/j.commatsci.2017.02.007
  • Denis PA . Stacked functionalized silicene: a powerful system to adjust the electronic structure of silicene. Phys Chem Chem Phys. 2015;17:5393–5402.10.1039/C4CP05331A
  • Gao N , Zheng WT , Jiang Q . Density functional theory calculations for two-dimensional silicene with halogen functionalization. Phys Chem Chem Phys. 2012;14:257–261.10.1039/C1CP22719 J
  • Huang B , Xiang HJ , Wei SH . Chemical functionalization of silicene: spontaneous structural transition and exotic electronic properties. Phys Rev Lett. 2013;111:145502.10.1103/PhysRevLett.111.145502
  • Zheng FB , Zhang CW . The electronic and magnetic properties of functionalized silicene: a first-principles study. Nanoscale Res Lett. 2012;7:422.10.1186/1556-276X-7-422
  • Tang WC , Sun ML , Ren QQ , et al . First principles study of silicene symmetrically and asymmetrically functionalized with halogen atoms. RSC Adv. 2016;6:95846–95854.10.1039/C6RA18179A
  • Osborn TH , Farajian AA . Stability of lithiated silicene from first principles. J Phys Chem C. 2012;116:22916–22920.10.1021/jp306889x
  • Hussain T , Chakraborty S , De Sarkar A , et al . Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Appl Phys Lett. 2014;105:123903.10.1063/1.4896503
  • Song EH , Yoo SH , Kim JJ , et al . External electric field induced hydrogen storage/release on calcium-decorated single-layer and bilayer silicene. Phys Chem Chem Phys. 2014;16:23985–23992.10.1039/C4CP02638A
  • Wang YS , Zheng R , Gao HY , et al . Metal adatoms-decorated silicene as hydrogen storage media. Int J Hydrogen Energy. 2014;39:14027–14032.10.1016/j.ijhydene.2014.06.164
  • Li F , Lu RF , Yao QS , et al . Geometric and electronic structures as well as thermodynamic stability of hexyl-modified silicon nanosheet. J Phys Chem C. 2013;117:13283–13288.10.1021/jp402875t
  • Spencer MJS , Morishita T , Mikami M , et al . The electronic and structural properties of novel organomodified Si nanosheets. Phys Chem Chem Phys. 2011;13:15418–15422.10.1039/c1cp21544b
  • Spencer MJS , Bassett MR , Morishita T , et al . Interactions between stacked layers of phenyl-modified silicene. New J Phys. 2013;15:125018.10.1088/1367-2630/15/12/125018
  • Wang R , Pi XD , Ni ZY , et al . Density functional theory study on organically surface-modified silicene. RSC Adv. 2015;5:33831–33837.10.1039/C5RA05751E
  • Spencer MJS , Morishita T , Bassett MR . Density functional theory calculations of phenol-modified monolayer silicon nanosheets. In Micro/Nano Materials, Devices, and Systems ; Friend, J. , Tan, H. H. , Eds.; SPIE: Melbourne, Australia, 2013; p 89230D.
  • Brennan MD , Morishita T , Spencer MJS . Tuning the band gap of silicene by functionalisation with naphthyl and anthracyl groups. J Chem Phys. 2016;144:114704.10.1063/1.4943880
  • Nakano H , Sugiyama Y , Morishita T , et al . Anion secondary batteries utilizing a reversible BF4 insertion/extraction two-dimensional Si material. J Mater Chem A. 2014;2:7588–7592.10.1039/c4ta00456f
  • Rubio-Pereda P , Takeuchi N . Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys. 2013;138:194702.10.1063/1.4804545
  • Dai J , Zeng XC . Covalent nitrophenyl diazonium functionalized silicene for spintronics: a first-principles study. Phys Chem Chem Phys. 2015;17:17957–17961.10.1039/C4CP04953E
  • Rubio-Pereda P , Takeuchi N . Density functional theory study of the organic functionalization of hydrogenated graphene. J Phys Chem C. 2013;117:18738–18745.10.1021/jp406192c
  • Bassett MR , Morishita T , Wilson HF , et al . Phenol-modified silicene: preferred substitution site and electronic properties. J Phys Chem C. 2016;120:6762–6770.10.1021/acs.jpcc.5b09914
  • De Padova P , Vogt P , Resta A , et al . Evidence of Dirac fermions in multilayer silicene. Appl Phys Lett. 2013;102:163106.10.1063/1.4802782
  • Vogt P , Capiod P , Berthe M , et al . Synthesis and electrical conductivity of multilayer silicene. Appl Phys Lett. 2014;104:021602.10.1063/1.4861857
  • Morishita T , Nishio K , Mikami M . Formation of single- and double-layer silicon in slit pores. Phys Rev B. 2008;77:081401.10.1103/PhysRevB.77.081401
  • Koga K , Tanaka H , Zeng XC . First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature. 2000;408:564–567.10.1038/35046035
  • Koga K , Gao GT , Tanaka H , et al . Formation of ordered ice nanotubes inside carbon nanotubes. Nature. 2001;412:802–805.10.1038/35090532
  • Alba-Simionesco C , Coasne B , Dosseh G , et al . Effects of confinement on freezing and melting. J Phys Condens Matter. 2006;18:R15–R68.10.1088/0953-8984/18/6/R01
  • Maniwa Y , Kataura H , Abe M , et al . Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett. 2005;401:534–538.10.1016/j.cplett.2004.11.112
  • Tersoff J . Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568.10.1103/PhysRevB.39.5566
  • Bai J , Tanaka H , Zeng XC . Graphene-like bilayer hexagonal silicon polymorph. Nano Res. 2010;3:694–700.10.1007/s12274-010-0032-6
  • Stillinger FH , Weber TA . Computer simulation of local order in condensed phases of silicon. Phys Rev B. 1985;31:5262–5271.10.1103/PhysRevB.31.5262
  • Johnston JC , Phippen S , Molinero V . A single-component silicon quasicrystal. J Phys Chem Lett. 2011;2:384–388.10.1021/jz101706 k
  • Morishita T , Spencer MJS , Kawamoto S , et al . A new surface and structure for silicene: polygonal silicene formation on the Al(111) surface. J Phys Chem C. 2013;117:22142–22148.10.1021/jp4080898
  • Morishita T , Russo SP , Snook IK , et al . First-principles study of structural and electronic properties of ultrathin silicon nanosheets. Phys Rev B. 2010;82:045419.10.1103/PhysRevB.82.045419
  • Kamal C , Chakrabarti A , Banerjee A , et al . Silicene beyond mono-layers-different stacking configurations and their properties. J Phys Condens Matter. 2013;25:085508.10.1088/0953-8984/25/8/085508
  • Fu HX , Zhang J , Ding ZJ , et al . Stacking-dependent electronic structure of bilayer silicene. Appl Phys Lett. 2014;104:131904.10.1063/1.4870534
  • Tabert CJ , Nicol EJ . Dynamical conductivity of AA-stacked bilayer graphene. Phys Rev B. 2012;86:075439.10.1103/PhysRevB.86.075439
  • Morishita T , Spencer MJS , Russo SP , et al . Surface reconstruction of ultrathin silicon nanosheets. Chem Phys Lett. 2011;506:221–225.10.1016/j.cplett.2011.03.004
  • Padilha JE , Pontes RB . Free-standing bilayer silicene: the effect of stacking order on the structural, electronic, and transport properties. J Phys Chem C. 2015;119:3818–3825.10.1021/jp512489 m
  • Lian C , Ni J . Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study. AIP Adv. 2013;3:52102.10.1063/1.4804246
  • Sakai Y , Oshiyama A . Structural stability and energy-gap modulation through atomic protrusion in freestanding bilayer silicene. Phys Rev B. 2015;91:201405(R).10.1103/PhysRevB.91.201405
  • Yaokawa R , Ohsuna T , Morishita T , et al . Monolayer-to-bilayer transformation of silicenes and their structural analysis. Nat Commun. 2016;7:10657.10.1038/ncomms10657
  • Jiang S , Arguilla MQ , Cultrara ND , et al . Covalently-controlled properties by design in group iv graphane analogues. Acc Chem Res. 2015;48:144–151.10.1021/ar500296e
  • Yaokawa R , Ohsuna T , Hayasaka Y , et al . Multilayer germanenes formed in zintl-phase CaGe2 by fluoride diffusion. ChemistrySelect. 2016;1(17):5579–5583.10.1002/slct.201601489