5,735
Views
27
CrossRef citations to date
0
Altmetric
Focus on Organic and Hybrid Photovoltaics

Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design

, , , , , , , & show all
Pages 53-75 | Received 30 Oct 2017, Accepted 26 Dec 2017, Published online: 24 Jan 2018

References

  • Best Research-Cell Efficiencies: NREL . 2017. Available from: http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg
  • Lewis NS . Toward cost-effective solar energy use. Science. 2007;315(5813):798–801.10.1126/science.1137014
  • Polman A , Knight M , Garnett EC , et al . Photovoltaic materials: present efficiencies and future challenges. Science. 2016;352(6283):aad4424.
  • Available from: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
  • Yoshikawa K , Kawasaki H , Yoshida W , et al . Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy. 2017;2:17032.
  • Richter A , Hermle M , Glunz SW . Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovoltaics. 2013;3(4):1184–1191.10.1109/JPHOTOV.2013.2270351
  • De Vos A . Detailed balance limit of the efficiency of tandem solar cells. J Phys D: Appl Phys. 1980;13(5):839.10.1088/0022-3727/13/5/018
  • Friedman DJ . Progress and challenges for next-generation high-efficiency multijunction solar cells. Curr Opin Solid State Mater Sci. 2010;14(6):131–138.10.1016/j.cossms.2010.07.001
  • Lee MM , Teuscher J , Miyasaka T , et al . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643–647.10.1126/science.1228604
  • Kim H-S , Lee C-R , Im J-H , et al . Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2:591.10.1038/srep00591
  • Hu L , Peng J , Wang W , et al . Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics. 2014;1(7):547–553.10.1021/ph5000067
  • Stranks SD , Eperon GE , Grancini G , et al . Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342(6156):341–344.10.1126/science.1243982
  • Wehrenfennig C , Eperon GE , Johnston MB , et al . High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater. 2014;26(10):1584–1589.10.1002/adma.201305172
  • Lin Q , Armin A , Nagiri RCR , et al . Electro-optics of perovskite solar cells. Nat Photon. 2015;9:106–112.10.1038/nphoton.2014.284
  • Noh JH , Im SH , Heo JH , et al . Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013;13(4):1764–1769.10.1021/nl400349b
  • Hao F , Stoumpos CC , Cao DH , et al . Lead-free solid-state organic-inorganic halide perovskite solar cells [Article]. Nat Photon. 2014;8(6):489–494.10.1038/nphoton.2014.82
  • Kojima A , Teshima K , Shirai Y , et al . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050–6051.10.1021/ja809598r
  • Yang WS , Park B-W , Jung EH , et al . Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 2017;356(6345):1376–1379.10.1126/science.aan2301
  • Hörantner MT , Leijtens T , Ziffer ME , et al . The potential of multijunction perovskite solar cells. ACS Energy Lett. 2017;2(10):2506–2513.10.1021/acsenergylett.7b00647
  • Berger RF , Neaton JB . Computational design of low-band-gap double perovskites. Phys Rev B. 2012;86(16):165211.10.1103/PhysRevB.86.165211
  • Huang L-y , Lambrecht WRL . Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys Rev B. 2016;93(19):195211.10.1103/PhysRevB.93.195211
  • Duong T , Wu Y , Shen H , et al . Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv Energy Mater. 2017;7(14):1700228.10.1002/aenm.201700228
  • McMeekin DP , Sadoughi G , Rehman W , et al . A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science. 2016;351(6269):151–155.10.1126/science.aad5845
  • Bailie CD , Christoforo MG , Mailoa JP , et al . Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energy Environ Sci. 2015;8(3):956–963.10.1039/C4EE03322A
  • Werner J , Weng C-H , Walter A , et al . Efficient Monolithic perovskite/silicon tandem solar cell with cell area > 1 cm2 . J Phys Chem Lett. 2016;7:161–166.10.1021/acs.jpclett.5b02686
  • Fu F , Feurer T , Jager T , et al . Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat Commun. 2015;6:8932.10.1038/ncomms9932
  • Todorov T , Gershon T , Gunawan O , et al . Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering. Adv Energy Mater. 2015;5(23):1500799.10.1002/aenm.201500799
  • Lee M , Park SJ , Hwang YJ , et al . Tandem architecture of perovskite and Cu(In, Ga)(S, Se)2 created by solution processes for solar cells. Adv Opt Mater. 2016;4:2102–2108.10.1002/adom.v4.12
  • Guchhait A , Dewi HA , Leow SW , et al . Over 20% efficient CIGS–perovskite tandem solar cells. ACS Energy Lett. 2017;2(4):807–812.10.1021/acsenergylett.7b00187
  • Eperon GE , Leijtens T , Bush KA , et al . Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science. 2016;354(6314):861–865.10.1126/science.aaf9717
  • Rajagopal A , Yang Z , Jo SB , et al . Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater. 2017;29(34):1702140.10.1002/adma.201702140
  • Jiang F , Liu T , Luo B , et al . A two-terminal perovskite/perovskite tandem solar cell. J Mater Chem A. 2016;4(4):1208–1213.10.1039/C5TA08744A
  • Forgács D , Gil-Escrig L , Pérez-Del-Rey D , et al . Efficient monolithic perovskite/perovskite tandem solar cells. Adv Energy Mater. 2017;7(8):1602121.10.1002/aenm.201602121
  • Chen C-C , Bae S-H , Chang W-H , et al . Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Mater Horiz. 2015;2(2):203–211.10.1039/C4MH00237G
  • Liu Y , Renna LA , Bag M , et al . High efficiency tandem thin-perovskite/polymer solar cells with a graded recombination layer. ACS Appl Mater Interfaces. 2016;8(11):7070–7076.10.1021/acsami.5b12740
  • Löper P , Moon S-J , de Nicolas SM , et al . Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys Chem Chem Phys. 2015;17:1619.10.1039/C4CP03788J
  • Fu F , Feurer T , Weiss Thomas P , et al . High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat Energy. 2016;2:16190.10.1038/nenergy.2016.190
  • Zhao D , Yu Y , Wang C , et al . Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy. 2017;2:17018.
  • Yu Z , Leilaeioun M , Holman Z . Selecting tandem partners for silicon solar cells. Nat Energy. 2016;1:16137.10.1038/nenergy.2016.137
  • White TP , Lal NN , Catchpole KR . Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency. IEEE J Photovoltaics. 2014;4(1):208–214.10.1109/JPHOTOV.2013.2283342
  • Berhe TA , Su W-N , Chen C-H , et al . Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci. 2016;9(2):323–356.10.1039/C5EE02733 K
  • Conings B , Drijkoningen J , Gauquelin N , et al . Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5(15):1500477.10.1002/aenm.201500477
  • Leijtens T , Eperon GE , Pathak S , et al . Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun. 2013;4:2885.
  • Yang J , Siempelkamp BD , Liu D , et al . Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–1963.10.1021/nn506864k
  • Babayigit A , Ethirajan A , Muller M , et al . Toxicity of organometal halide perovskite solar cells. Nat Mater. 2016;15(3):247–251.10.1038/nmat4572
  • Giustino F , Snaith HJ . Toward lead-free perovskite solar cells. ACS Energy Lett. 2016;1(6):1233–1240.10.1021/acsenergylett.6b00499
  • Wang J , Di Giacomo F , Brüls J , et al . Highly efficient perovskite solar cells using non-toxic industry compatible solvent system. Sol RRL. 2017;2:1700091.10.1002/solr.201700091
  • Shockley W , Queisser HJ . Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32(3):510–519.10.1063/1.1736034
  • Todorov T , Gunawan O , Guha S . A road towards 25% efficiency and beyond: perovskite tandem solar cells. Mol Syst Des Eng. 2016;1(4):370–376.10.1039/C6ME00041J
  • Yamaguchi M , Takamoto T , Araki K , et al . Multi-junction III–V solar cells: current status and future potential. Sol Energy. 2005;79(1):78–85.10.1016/j.solener.2004.09.018
  • Guter W , Schöne J , Philipps SP , et al . Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl Phys Lett. 2009;94(22):223504.10.1063/1.3148341
  • Albrecht S , Saliba M , Correa Baena JP , et al . Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ Sci. 2016;9:81–88.10.1039/C5EE02965A
  • Hadipour A , de Boer B , Blom PWM . Organic tandem and multi-junction solar cells. Adv Funct Mater. 2008;18(2):169–181.10.1002/(ISSN)1616-3028
  • Uzu H , Ichikawa M , Hino M , et al . High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system. Appl Phys Lett. 2015;106(1):013506.10.1063/1.4905177
  • Duong T , Grant D , Rahman S , et al . Filterless spectral splitting perovskite-silicon tandem system with >23% calculated efficiency. IEEE J Photovoltaics. 2016;6:1432.10.1109/JPHOTOV.2016.2600344
  • Bremner SP , Levy MY , Honsberg CB . Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog Photovoltaics: Res Appl. 2008;16(3):225–233.10.1002/pip.v16:3
  • Sahli F , Kamino BA , Werner J , et al . Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv Energy Mater. 2017:1701609.10.1002/aenm.201701609
  • Bush KA , Palmstrom AF , Yu ZJ , et al . 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature. Energy. 2017;2:17009.
  • Uhl AR , Yang Z , Jen AKY , et al . Solution-processed chalcopyrite-perovskite tandem solar cells in bandgap-matched two- and four-terminal architectures. J Mater Chem A. 2017;5(7):3214–3220.10.1039/C7TA00562H
  • Available from: https://www.oxfordpv.com/
  • Available from: http://www.microquanta.com/
  • Chen B , Bai Y , Yu Z , et al . Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells. Adv Energy Mater. 2016;6(19):1601128.10.1002/aenm.201601128
  • Werner J , Barraud L , Walter A , et al . Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett. 2016;1(2):474–480.10.1021/acsenergylett.6b00254
  • Ahmad W , Khan J , Niu G , et al . Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. Sol RRL. 2017;1(7):1700048.10.1002/solr.v1.7
  • Hsiao S-Y , Lin H-L , Lee W-H , et al . Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Adv Mater. 2016;28(32):7013–7019.10.1002/adma.201601505
  • Zhang W , Anaya M , Lozano G , et al . Highly efficient perovskite solar cells with tunable structural color. Nano Lett. 2015;15(3):1698–1702.10.1021/nl504349z
  • Hoke ET , Slotcavage DJ , Dohner ER , et al . Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci. 2015;6(1):613–617.10.1039/C4SC03141E
  • Jacobs DA , Wu Y , Shen H , et al . Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Phys Chem Chem Phys. 2017;19(4):3094–3103.10.1039/C6CP06989D
  • Wu Y , Shen H , Walter D , et al . On the origin of hysteresis in perovskite solar cells. Adv Funct Mater. 2016;26(37):6807–6813.10.1002/adfm.v26.37
  • Tress W , Marinova N , Moehl T , et al . Understanding the rate-dependent JV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ Sci. 2015;8:995–1004.10.1039/C4EE03664F
  • Mailoa JP , Bailie CD , Johlin EC , et al . A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett. 2015;106(12):121105.10.1063/1.4914179
  • Wu Y , Yan D , Peng J , et al . Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency. Energy Environ Sci. 2017;10:2472–2479.10.1039/C7EE02288C
  • Fan R , Zhou N , Zhang L , et al . Toward full solution processed perovskite/Si monolithic tandem solar device with PCE exceeding 20%. Sol RRL. 2017;1(11):1700149.10.1002/solr.201700149
  • Yang Y , Chen Q , Hsieh Y-T , et al . Multilayer transparent top electrode for solution processed perovskite/Cu(In, Ga)(Se,S)2 four terminal tandem solar cells. ACS Nano. 2015;7:7714–7721.10.1021/acsnano.5b03189
  • Pisoni S , Fu F , Feurer T , et al . Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J Mater Chem A. 2017;5(26):13639–13647.10.1039/C7TA04225F
  • Saliba M , Matsui T , Domanski K , et al . Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016;354(6309):206–209.
  • Tan H , Jain A , Voznyy O , et al . Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science. 2017;355(6326):722–726.10.1126/science.aai9081
  • Noel NK , Stranks SD , Abate A , et al . Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci. 2014;7(9):3061–3068.10.1039/C4EE01076K
  • Kumar MH , Dharani S , Leong WL , et al . Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater. 2014;26(41):7122–7127.10.1002/adma.201401991
  • Takahashi Y , Obara R , Lin Z-Z , et al . Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 2011;40(20):5563–5568.10.1039/c0dt01601b
  • Kumar MH , Dharani S , Leong WL , et al . Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater. 2014;26(41):7122–7127.10.1002/adma.201401991
  • Hao F , Stoumpos CC , Guo P , et al . Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc. 2015;137(35):11445–11452.10.1021/jacs.5b06658
  • Zhao B , Abdi-Jalebi M , Tabachnyk M , et al . High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics. Adv Mater. 2017;29(2):1604744.10.1002/adma.v29.2
  • Li Y , Sun W , Yan W , et al . 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv Energy Mater. 2016;6(24):1601353.10.1002/aenm.201601353
  • Liu C , Fan J , Li H , et al . Highly efficient perovskite solar cells with substantial reduction of lead content. Sci Rep. 2016;6:35705.10.1038/srep35705
  • Liao W , Zhao D , Yu Y , et al . Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J Am Chem Soc. 2016;138(38):12360–12363.10.1021/jacs.6b08337
  • Shen H , Wu Y , Peng J , et al . Improved reproducibility for perovskite solar cells with 1 cm2 active area by a modified two-step process. ACS Appl Mater Interfaces. 2017;9(7):5974–5981.10.1021/acsami.6b13868
  • Li X , Bi D , Yi C , et al . A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science. 2016;353:6294.
  • Liao H-C , Guo P , Hsu C-P , et al . Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation. Adv Energy Mater. 2017;7(8):1601660.10.1002/aenm.201601660
  • Back H , Kim J , Kim G , et al . Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Sol Energy Mater Sol Cells. 2016;144:309–315.10.1016/j.solmat.2015.09.018
  • Tang S , Deng Y , Zheng X , et al . Composition engineering in doctor-blading of perovskite solar cells. Adv Energy Mater. 2017;7(18):1700302.10.1002/aenm.201700302
  • Kim JH , Williams ST , Cho N , et al . Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv Energy Mater. 2015;5(4):1401229.10.1002/aenm.201401229
  • Razza S , Di Giacomo F , Matteocci F , et al . Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J Power Sources. 2015;277:286–291.10.1016/j.jpowsour.2014.12.008
  • Deng Y , Peng E , Shao Y , et al . Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ Sci. 2015;8(5):1544–1550.10.1039/C4EE03907F
  • Yang Z , Chueh C-C , Zuo F , et al . High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater. 2015;5(13):1500328.10.1002/aenm.201500328
  • Kim J , Yun JS , Cho Y , et al . Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett. 2017;2(9):1978–1984.10.1021/acsenergylett.7b00573
  • Barrows AT , Pearson AJ , Kwak CK , et al . Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ Sci. 2014;7(9):2944–2950.10.1039/C4EE01546K
  • Tait JG , Manghooli S , Qiu W , et al . Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating. J Mater Chem A. 2016;4(10):3792–3797.10.1039/C6TA00739B
  • Das S , Yang B , Gu G , et al . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon. 2015;2(6):680–686.10.1021/acsphotonics.5b00119
  • Ciro J , Mejía-Escobar MA , Jaramillo F . Slot-die processing of flexible perovskite solar cells in ambient conditions. Sol Energy. 2017;150:570–576.10.1016/j.solener.2017.04.071
  • Jung Y-S , Hwang K , Heo Y-J , et al . One-step printable perovskite films fabricated under ambient conditions for efficient and reproducible solar cells. ACS Appl Mater Interfaces. 2017;9(33):27832–27838.10.1021/acsami.7b05078
  • Chen H , Ye F , Tang W , et al . A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature. 2017;550(7674):92–95.
  • Ding B , Gao L , Liang L , et al . Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces. 2016;8(31):20067–20073.10.1021/acsami.6b05862
  • Gao L-L , Liang L-S , Song X-X , et al . Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. J Mater Chem A. 2016;4(10):3704–3710.10.1039/C6TA00230G
  • Nie W , Tsai H , Asadpour R , et al . High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522–525.10.1126/science.aaa0472
  • Agresti A , Pescetelli S , Palma AL , et al . Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Lett. 2017;2(1):279–287.10.1021/acsenergylett.6b00672
  • Moon SJY , Yum JH , Lofgren L , et al . Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE J Photovoltaics. 2015;5:1087–1092.10.1109/JPHOTOV.2015.2416913
  • Galagan Y , Coenen EWC , Verhees WJH , et al . Towards the scaling up of perovskite solar cells and modules. J Mater Chem A. 2016;4(15):5700–5705.10.1039/C6TA01134A
  • Armin A , Hambsch M , Wolfer P , et al . Efficient, large area, and thick junction polymer solar cells with balanced mobilities and low defect densities. Adv Energy Mater. 2015;5(3):1401221.10.1002/aenm.201401221
  • Hambsch M , Lin Q , Armin A , et al . Efficient, monolithic large area organohalide perovskite solar cells. J Mater Chem A. 2016;4:13830–13836.10.1039/C6TA04973G
  • Jaysankar M , Qiu W , van Eerden M , et al . Four-terminal perovskite/silicon multijunction solar modules. Adv Energy Mater. 2017;7(15):1602807.10.1002/aenm.201602807
  • Jaysankar M . Large-area scalable perovskite/silicon multijunction solar modules. 3rd International Conference on Perovskite Solar Cells and Optoelectronics. 2017; Oxford, UK.
  • Paetzold UW , Jaysankar M , Gehlhaar R , et al . Scalable perovskite/CIGS thin-film solar module with power conversion efficiency of 17.8%. J Mater Chem A. 2017;5(20):9897–9906.10.1039/C7TA01651D
  • Ellmer K . Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon. 2012;6(12):809–817.10.1038/nphoton.2012.282
  • Peng J , Duong T , Zhou X , et al . Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv Energy Mater. 2016;7(4):1601768.
  • Werner J , Geissbühler J , Dabirian A , et al . Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells. ACS Appl Mater Interfaces. 2016;8(27):17260–17267.10.1021/acsami.6b04425
  • Liu P , Liu X , Lyu L , et al . Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl Phys Lett. 2015;106(19):193903.10.1063/1.4921339
  • Dai X , Zhang Y , Shen H , et al . Working from both sides: composite metallic semitransparent top electrode for high performance perovskite solar cells. ACS Appl Mater Interfaces. 2016;8(7):4523–4531.10.1021/acsami.5b10830
  • Bae S , Kim H , Lee Y , et al . Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano. 2010;5(8):574–578.10.1038/nnano.2010.132
  • Shen H , Jacobs DA , Wu Y , et al . Inverted hysteresis in CH3NH3PbI3 solar cells: role of stoichiometry and band alignment. J Phys Chem Lett. 2017;8(12):2672–2680.10.1021/acs.jpclett.7b00571
  • Tress W , Correa Baena JP , Saliba M , et al . Inverted current-voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination. Adv Energy Mater. 2016;6:1600396.10.1002/aenm.201600396
  • Peng J , Wu Y , Ye W , et al . Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci. 2017;10(8):1792–1800.10.1039/C7EE01096F
  • Brivio F , Caetano C , Walsh A . Thermodynamic origin of photoinstability in the CH3NH3Pb(I1–xBrx)3 hybrid halide perovskite alloy. J Phys Chem Lett. 2016;7(6):1083–1087.10.1021/acs.jpclett.6b00226
  • Duong T , Mulmudi HK , Wu Y , et al . Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl Mater Interfaces. 2017;9(32):26859–26866.10.1021/acsami.7b06816
  • Gratia P , Grancini G , Audinot J-N , et al . Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J Am Chem Soc. 2016;138(49):15821–15824.10.1021/jacs.6b10049
  • Wu N , Wu Y , Shen H , et al . Identifying the cause of voltage and fill factor losses in perovskite solar cells using luminescence measurements. Energy Technol. 2017;5:1827–1835.10.1002/ente.v5.10
  • Nakanishi A , Takiguchi Y , Miyajima S . Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si:H/p-type μc-Si1–xOx:H tunnel junction. Phys Status Solidi (A). 2016;213(7):1997–2002.10.1002/pssa.v213.7
  • Filipič M , Löper P , Niesen B , et al . CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt Express. 2015;23(7):A263–A278.10.1364/OE.23.00A263
  • Grant DT , Catchpole KR , Weber kJ , et al . Design guidelines for perovskite/silicon 2-terminal tandem solar cells: an optical study. Opt Express. 2016;24(22):A1454–A1470.10.1364/OE.24.0A1454
  • Hu J , Cheng Q , Fan R , et al . Recent development of organic–inorganic perovskite-based tandem solar cells. Sol RRL. 2017;1(6):1700045.10.1002/solr.201700045
  • Conings B , Drijkoningen J , Gauquelin N , et al . Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater. 2015;5:1500477.10.1002/aenm.201500477
  • Lee S-W , Kim S , Bae S , et al . UV degradation and recovery of perovskite solar cells. Sci Rep. 2016;6:38150.
  • Zhou W , Zhao Y , Zhou X , et al . Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J Phys Chem Lett. 2017;8(17):4122–4128.10.1021/acs.jpclett.7b01851
  • Bryant D , Aristidou N , Pont S , et al . Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ Sci. 2016;9(5):1655–1660.10.1039/C6EE00409A
  • Sun Q , Fassl P , Becker-Koch D , et al . Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Adv Energy Mater. 2017;7:1700977.10.1002/aenm.201700977
  • Yu X , Qin Y , Peng Q . Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. J Phys Chem A. 2017;121(6):1169–1174.10.1021/acs.jpca.6b12170
  • Zhang L , Sit PHL . Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3 . J Mater Chem A. 2017;5(19):9042–9049.10.1039/C7TA01091E
  • Aristidou N , Sanchez-Molina I , Chotchuangchutchaval T , et al . The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed. 2015;54(28):8208–8212.10.1002/anie.201503153
  • Cacovich S , Ciná L , Matteocci F , et al . Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale. 2017;9(14):4700–4706.10.1039/C7NR00784A
  • Li Z , Xiao C , Yang Y , et al . Extrinsic ion migration in perovskite solar cells. Energy Environl Sci. 2017;10(5):1234–1242.10.1039/C7EE00358G
  • Arora N , Dar MI , Hinderhofer A , et al . Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science. 2017;358(6364):768–771.10.1126/science.aam5655
  • Chen W , Wu Y , Yue Y , et al . Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science. 2015;350(6263):944–948.10.1126/science.aad1015
  • Mei A , Li X , Liu L , et al . A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345(6194):295–298.10.1126/science.1254763
  • Ye M , Hong X , Zhang F , et al . Recent advancements in perovskite solar cells: flexibility, stability and large scale. J Mater Chem A. 2016;4(18):6755–6771.10.1039/C5TA09661H
  • Berhe TA , Su W-N , Chen C-H , et al . Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci. 2016;9:323–356.10.1039/C5EE02733K
  • Heo JH , Han HJ , Lee M , et al . Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ Sci. 2015;8(10):2922–2927.10.1039/C5EE01050K
  • Li F , Liu M . Recent efficient strategies for improving the moisture stability of perovskite solar cells. J Mater Chem A. 2017;5(30):15447–15459.10.1039/C7TA01325F
  • Yang J , Siempelkamp BD , Liu D , et al . Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–1963.10.1021/nn506864 k
  • Babayigit A , Duy Thanh D , Ethirajan A , et al . Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci Rep. 2016;6:18721.
  • Slavney AH , Smaha RW , Smith IC , et al . Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorg Chem. 2017;56(1):46–55.10.1021/acs.inorgchem.6b01336
  • Hailegnaw B , Kirmayer S , Edri E , et al . Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J Phys Chem Lett. 2015;6(9):1543–1547.10.1021/acs.jpclett.5b00504
  • Nejand BA , Gharibzadeh S , Ahmadi V , et al . Novel solvent-free perovskite deposition in fabrication of normal and inverted architectures of perovskite solar cells. Sci Rep. 2016;6:33649.
  • Hsieh T-Y , Wei T-C , Wu K-L , et al . Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chem Commun. 2015;51(68):13294–13297.10.1039/C5CC05298 J
  • Chávez-Urbiola EA , Vorobiev YV , Bulat LP . Solar hybrid systems with thermoelectric generators. Sol Energy. 2012;86(1):369–378.10.1016/j.solener.2011.10.020
  • Amatya R , Ram RJ . Solar thermoelectric generator for micropower applications. J Electr Mater. 2010;39(9):1735–1740.10.1007/s11664-010-1190-8
  • Zhu W , Deng Y , Wang Y , et al . High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management. Energy. 2016;100:91–101.10.1016/j.energy.2016.01.055
  • Park K-T , Shin S-M , Tazebay AS , et al . Lossless hybridization between photovoltaic and thermoelectric devicess. Sci Rep. 2013;3:2123.10.1038/srep02123
  • Vorobiev Y , Gonzalez-Hernandez J , Vorobiev P , et al . Thermal-photovoltaic solar hybrid system for efficient solar energy conversion. Sol Energy. 2016;80:170–176.
  • Zhang J , Xuan Y , Yang L . A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell. Int J Energy Res. 2016;40(10):1400–1409.10.1002/er.v40.10
  • Wang N , Han L , He H , et al . A novel high-performance photovoltaic-thermoelectric hybrid device. Energy Environ Sci. 2011;4(9):3676–3679.10.1039/c1ee01646f
  • Lewis NS , Nocera DG . Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci. 2006;103(43):15729–15735.10.1073/pnas.0603395103
  • Lewis NS . Research opportunities to advance solar energy utilization. Science. 2016;351(6271):aad1920.
  • Zhang K , Ma M , Li P , et al . Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv Energy Mater. 2016;6(15):1600602.10.1002/aenm.201600602
  • Fountaine KT , Lewerenz HJ , Atwater HA . Efficiency limits for photoelectrochemical water-splitting. Nat Commun. 2016;7:13706.
  • Prévot MS , Sivula K . Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C. 2013;117(35):17879–17893.10.1021/jp405291g
  • Brillet J , Yum J-H , Cornuz M , et al . Highly efficient water splitting by a dual-absorber tandem cell. Nat Photon. 2012;6(12):824–828.10.1038/nphoton.2012.265
  • Gurudayal , Sabba D , Kumar MH , et al . Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 2015;15(6):3833–3839.10.1021/acs.nanolett.5b00616
  • Luo J , Li Z , Nishiwaki S , et al . Targeting Ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-xSe2 Photocathodes. Adv Energy Mater. 2015;5(24):1501520.10.1002/aenm.201501520
  • Xiao S , Hu C , Lin H , et al . Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. J Mater Chem A. 2017;5(36):19091–19097.10.1039/C7TA06309A
  • Qiu Y , Liu W , Chen W , et al . Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci Adv. 2016;2(6):e1501764.
  • Kim JH , Jo Y , Kim JH , et al . Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf. ACS Nano. 2015;9(12):11820–11829.10.1021/acsnano.5b03859
  • Zhang X , Zhang B , Cao K , et al . A perovskite solar cell-TiO2@BiVO4 photoelectrochemical system for direct solar water splitting. J Mater Chem A. 2015;3(43):21630–21636.10.1039/C5TA05838D
  • Iwase A , Kudo A , Numata Y , et al . Solar water splitting utilizing a SiC photocathode, a BiVO4 photoanode, and a perovskite solar cell. ChemSusChem. 2017;10(22):4420–4423.10.1002/cssc.201701663
  • Dias P , Schreier M , Tilley SD , et al . Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv Energy Mater. 2015;5(24):1501537.
  • Hu S , Shaner MR , Beardslee JA , et al . Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science. 2014;344(6187):1005–1009.10.1126/science.1251428
  • Luo J , Li Z , Nishiwaki S , et al . Targeting ideal dual-absorber tandem water splitting using perovskite photovoltaics and CuInxGa1-xSe2 Photocathodes. Adv Energy Mater. 2015;5(24):1501520.10.1002/aenm.201501520