3,294
Views
31
CrossRef citations to date
0
Altmetric
New topics/Others

Complementary evaluation of structure stability of perovskite oxides using bond-valence and density-functional-theory calculations

ORCID Icon, &
Pages 101-107 | Received 28 Sep 2017, Accepted 17 Jan 2018, Published online: 19 Feb 2018

References

  • Shannon RD . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Found Adv. 1976;32:751–767.10.1107/S0567739476001551
  • Goldschmid VM . Die Gesetze der Krystallochemie. Naturwissenschaften. 1926;14:477–485.10.1007/BF01507527
  • Alonso JA , Martínez-Lope MJ , Casais MT , et al . Metal−insulator transitions, structural and microstructural evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: evidence for room-temperature charge disproportionation in monoclinic HoNiO3 and YNiO3 . J Am Chem Soc. 1999;121:4754–4762.10.1021/ja984015x
  • Torrance JB , Lacorre P , Nazzal AI , et al . Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys Rev B. 1992;45:8209–8212.10.1103/PhysRevB.45.8209
  • Akaogi M , Kojitani H , Yusa H , et al . High-pressure transitions and thermochemistry of MGeO3 (M = Mg, Zn and Sr) and Sr-silicates: systematics in enthalpies of formation of A2+B4+O3 perovskites. Phys Chem Miner. 2005;32:603–613.10.1007/s00269-005-0034-1
  • Martinez J-R , Mohn CE , Stolen S , et al . What can a ‘quantum black-box’ do for the inorganic thermochemist? PCCP. 2006;8:2036–2039.10.1039/B600485G
  • Brown ID , Altermatt D . Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 1985;41:244–247.10.1107/S0108768185002063
  • Brown ID . Recent developments in the methods and applications of the bond valence model. Chem Rev. 2009;109:6858–6919.
  • Brese NE , Okeeffe M . Bond-valence parameters for solids. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 1991;47:192–197.10.1107/S0108768190011041
  • Kolitsch U , Giester G . Elyite, Pb4Cu(SO4)O2(OH)4·H2O: crystal structure and new data. Am Mineral. 2000;85:1816.10.2138/am-2000-11-1226
  • Azuma M , Takata K , Saito T , et al . Designed ferromagnetic, ferroelectric Bi2NiMnO6 . J Am Chem Soc. 2005;127:8889–8892.10.1021/ja0512576
  • Oka K , Oh-ishi K . Observation of anion order in Pb2Ti4O9F2 . Inorg Chem. 2015;54:10239–10242.10.1021/acs.inorgchem.5b01496
  • Salinassanchez A , Garciamunoz JL , Rodriguezcarvajal J , et al . Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron-diffraction. J Solid State Chem. 1992;100:201–211.10.1016/0022-4596(92)90094-C
  • Byeon S-H , Lufaso MW , Parise JB , et al . High-pressure synthesis and characterization of perovskites with simultaneous ordering of both the A- and B-site cations, CaCu3Ga2M2O12 (M = Sb, Ta). Chem Mater. 2003;15:3798–3804.10.1021/cm034318c
  • Lufaso MW , Barnes PW , Woodward PM . Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Crystallogr B. 2006;62:397–410.10.1107/S010876810600262X
  • Lufaso MW , Woodward PM . Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr Sect B. 2001;57:725–738.10.1107/S0108768101015282
  • Zhang H , Li N , Li K , et al . Structural stability and formability of ABO3-type perovskite compounds. Acta Crystallogr B. 2007;63:812–818.10.1107/S0108768107046174
  • Long YW , Hayashi N , Saito T , et al . Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite. Nature. 2009;458:60–63.10.1038/nature07816
  • Etani H , Yamada I , Ohgushi K , et al . Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12 . J Am Chem Soc. 2013;135:6100–6106.10.1021/ja312015j
  • Yamada I , Etani H , Tsuchida K , et al . Control of bond-strain-induced electronic phase transitions in iron perovskites. Inorg Chem. 2013;52:13751–13761.10.1021/ic402344 m
  • Limpijumnong S , Jungthawan S . First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: a case of a low-transformation barrier. Phys Rev B. 2004;70:054104.10.1103/PhysRevB.70.054104
  • Li L , Yu W , Jin C . First-principles study of pressure-induced phase transition in the strongly correlated compound YCrO4 . Phys Rev B. 2006;73:174115.10.1103/PhysRevB.73.174115
  • Parlinski K , Li ZQ , Kawazoe Y . First-principles determination of the soft mode in cubic ZrO2 . Phys Rev Lett. 1997;78:4063–4066.10.1103/PhysRevLett.78.4063
  • Togo A , Tanaka I . First principles phonon calculations in materials science. Scripta Mater. 2015;108:1–5.10.1016/j.scriptamat.2015.07.021
  • Kresse G , Hafner J . Ab initio molecular dynamics for open-shell transition metals. Phys Rev B. 1993;48:13115–13118.10.1103/PhysRevB.48.13115
  • Blöchl PE . Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.
  • Kresse G , Hafner J . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49:14251–14269.10.1103/PhysRevB.49.14251
  • Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.10.1103/PhysRevB.54.11169
  • Kresse G , Furthmüller J . Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50.10.1016/0927-0256(96)00008-0
  • Perdew JP , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • Brown ID , Poeppelmeier KR . Bond Valences. Berlin: Springer Berlin Heidelberg; 2014.10.1007/978-3-642-54968-7
  • Yashima M , Ali R . Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3 . Solid State Ionics. 2009;180:120–126.10.1016/j.ssi.2008.11.019
  • Luo W-Q , Shen Z-Y , Li Y-M , et al . Structural characterizations, dielectric properties and impedance spectroscopy analysis of Nd x Sr1–1.5x TiO3 ceramics. J Electroceram. 2013;31:117–123.10.1007/s10832-013-9805-0
  • Kwei GH , Lawson AC , Billinge SJL , et al . Structures of the ferroelectric phases of barium titanate. J Phys Chem. 1993;97:2368–2377.10.1021/j100112a043
  • Stoch P , Szczerba J , Lis J , et al . Crystal structure and ab initio calculations of CaZrO3 . J Eur Ceram Soc. 2012;32:665–670.10.1016/j.jeurceramsoc.2011.10.011
  • Ahtee A , Ahtee M , Glazer AM , et al . The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr Sect B. 1976;32:3243–3246.10.1107/S0567740876010029
  • Ahmed I , Eriksson SG , Ahlberg E , et al . Proton conductivity and low temperature structure of In-doped BaZrO3 . Solid State Ionics. 2006;177:2357–2362.10.1016/j.ssi.2006.05.030
  • Mitchell RH , Liferovich RP . A structural study of the perovskite series Ca1−x Na x Ti1−x Ta x O3 . J Solid State Chem. 2004;177:4420–4427.10.1016/j.jssc.2004.09.031
  • Christopher JH , Brendan JK , Bryan CC . Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition. J Phys Condens Matter. 2000;12:349.
  • Kuwabara A , Tohei T , Yamamoto T , et al . Ab initiolattice dynamics and phase transformations of ZrO2 . Phys Rev B. 2005;71:064301.
  • Moriwake H , Kuwabara A , Fisher CAJ , et al . First-principles calculations of lattice dynamics in CdTiO3 and CaTiO3: phase stability and ferroelectricity. Phys Rev B. 2011;84:104114.10.1103/PhysRevB.84.104114
  • Nielsen MB , Ceresoli D , Parisiades P , et al . Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature. Phys Rev B. 2014;90:214101.10.1103/PhysRevB.90.214101
  • Cazorla C , Diéguez O , Íñiguez J . Multiple structural transitions driven by spin-phonon couplings in a perovskite oxide. Sci Adv. 2017;3:e1700288.10.1126/sciadv.1700288
  • Paul A , Sun J , Perdew JP , et al . Accuracy of first-principles interatomic interactions and predictions of ferroelectric phase transitions in perovskite oxides: energy functional and effective Hamiltonian. Phys Rev B. 2017;95:054111.10.1103/PhysRevB.95.054111