27,136
Views
140
CrossRef citations to date
0
Altmetric
Focus on Overview of innovative materials for energy

Material challenges for solar cells in the twenty-first century: directions in emerging technologies

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 336-369 | Received 07 Jun 2017, Accepted 24 Jan 2018, Published online: 10 Apr 2018

References

  • Becquerel E . Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques [Research on sunlight chemical radiation effects using electrical currents.]. Comptes Rendus Acad Sci. 1839;9:145–149.
  • Adams WG , Day RE . The action of light on selenium. Philos Trans R Soc Lond. 1877;167:313–349.
  • Chapin DM , Fuller CS , Pearson GL . A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys. 1954;25:676–677.
  • Bookshop – Electricity Information 2016 [Internet]. [cited 2017 May 11]. Available from: https://www.iea.org/bookshop/727-Electricity_Information_2016
  • Petrova-Koch V , Hezel R , Goetzberger A . High-efficient low-cost photovoltaics: recent developments. Berlin Heidelberg: Springer; 2008.
  • Gangopadhyay U , Jana S , Das S . State of art of solar photovoltaic technology. Conf Pap Sci. [Internet]. 2013 [cited 2017 May 11]. Available from: https://www.hindawi.com/archive/2013/764132/abs/
  • Energy SP . Technology roadmap. 2014 [cited 2017 May 11]. Available from: http://www.bpva.org.uk/media/215436/technologyroadmapsolarphotovoltaicenergy_2014edition.pdf
  • Schmela M . Global market outlook for solar power/2016–2020.
  • Louwen A , van Sark WGJHM , Faaij APC , et al . Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development. Nat Commun. 2016;7:13728.
  • Photovoltaic system pricing trends: historical, recent, and near-term projections – 2014 Edition | Department of Energy [Internet]. [cited 2017 May 11]. Available from: https://energy.gov/eere/sunshot/downloads/photovoltaic-system-pricing-trends-historical-recent-and-near-term
  • Koppelaar RHEM . Solar-PV energy payback and net energy: meta-assessment of study quality, reproducibility, and results harmonization. Renew Sustain Energy Rev. 2017;72:1241–1255.
  • Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems . A systematic review and meta-analysis [Internet]. [cited 2017 May 11]. Available from: http://ac.els-cdn.com/S136403211500146X/1-s2.0-S136403211500146X-main.pdf?_tid=cf23c53e-361c-11e7-b79c-00000aacb35e&acdnat=1494488482_66c7a11da53470ce014b2df30efde701
  • Jordan DC , Kurtz SR , VanSant K , et al . Compendium of photovoltaic degradation rates. Prog Photovolt Res Appl. 2016;24:978–989.
  • Shockley W , Queisser HJ . Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32:510–519.
  • Green MA , Bremner SP . Energy conversion approaches and materials for high-efficiency photovoltaics. Nat Mater. 2017;16:23–34.
  • Green MA , Emery K , Hishikawa Y , et al . Solar cell efficiency tables (version 49). Prog Photovolt Res Appl. 2017;25:3–13.
  • Photovoltaic Research | NREL [Internet]. [cited 2017 May 12]. Available from: https://www.nrel.gov/pv/
  • Cai L , Liang L , Wu J , et al . Large area perovskite solar cell module. J Semicond. 2017;38:014006.
  • Mitchell B , Peharz G , Siefer G , et al . Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency. Prog Photovolt Res Appl. 2011;19:61–72.
  • Kang D-W , Takiguchi Y , Sichanugrist P , et al . InGaP//GaAs//c-Si 3-junction solar cells employing spectrum-splitting system. Prog Photovolt Res Appl. 2016;24:1016–1023.
  • Green MA , Keevers MJ , Ramon B , et al . Improvements in sunlight to electriccity conversion efficiency: above 40% for direct sunlight and over 30 for global. The 31st European PV Solar Energy Conference and Exhibition. 2015 Sep 14–18; Hamburg; Germany; 2015.
  • Bett AW , Dimroth F , Siefer G . Multijunction concentrator solar cells. In: Luque A , Andreev VM , editor. Concentrator photovoltaics. Berlin: Springer; 2007. p. 67–87.
  • King RR , Boca A , Hong W , et al . Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells. 24th European Photovoltaic Solar Energy Conference; 2009 Sep 21–25; Hamburg, Germany; 2009. p. 55–61.
  • Chiu PT , Law DC , Woo RL , et al . Direct semiconductor bonded 5 J cell for space and terrestrial applications. IEEE J Photovolt. 2014;4:493–497.
  • Cariou R , Benick J , Beutel P , et al . Monolithic two-terminal III-V//Si triple-junction solar cells with 30.2% efficiency under 1-Sun AM1.5 g. IEEE J Photovolt. 2017;7:367–373.
  • Press release – New world record for solar cell efficiency at 46% – Fraunhofer ISE [Internet]. Fraunhofer Institute for Solar Energy Systems ISE. [cited 2017 May 4]. Available from: http://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html
  • Guter W , Schöne J , Philipps SP , et al . Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl Phys Lett. 2009;94:223504.
  • Press release – sharp develops concentrator solar cell with world’s highest conversion efficiency of 43.5% | Press Releases | Sharp Global [Internet]. [cited 2017 May 4]. Available from: http://www.sharp-world.com/corporate/news/120531.html
  • Patel P , Aiken D , Boca A , et al . Experimental results from performance improvement and radiation hardening of inverted metamorphic multijunction solar cells. IEEE J Photovolt. 2012;2:377–381.
  • Wojtczuk S , Chiu P , Zhang X , et al . Bifacial growth InGaP/GaAs/InGaAs concentrator solar cells. IEEE J Photovolt. 2012;2:371–376.
  • Sabnis V , Yuen H , Wiemer M . High-efficiency multijunction solar cells employing dilute nitrides. AIP Conf Proc. Toledo; 2012.
  • Barnham KWJ , Duggan G . A new approach to high-efficiency multi-band-gap solar cells. J Appl Phys. 1990;67:3490–3493.
  • Fujii H , Toprasertpong K , Wang Y , et al . 100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells. Prog Photovolt Res Appl. 2013;22:784–795.
  • Toprasertpong K , Fujii H , Thomas T , et al . Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over-50%-efficient lattice-matched quad-junction solar cells. Prog Photovolt Res Appl. 2016;24:533–542.
  • NREL, Woodhouse M , Goodrich A . A manufacturing cost analysis relevant to single-and dual-junction photovoltaic cells fabricated with III-Vs and III-Vs grown on czochralski silicon (Presentation), NREL (National Renewable Energy Laboratory) [Internet]. 2013 [cited 2015 Dec 2]. Available from: http://www.nrel.gov/docs/fy14osti/60126.pdf
  • Bobela DC , Gedvilas L , Woodhouse M , et al . Economic competitiveness of III–V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios. Prog Photovolt Res Appl. 2016;25:41–48.
  • Kim S , Chung J-W , Lee H , et al . Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology. Sol Energy Mater Sol Cells. 2013;119:26–35.
  • Sai H , Matsui T , Koida T , et al . Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Appl Phys Lett. 2015;106:213902.
  • Shah A , Moulin E , Ballif C . Technological status of plasma-deposited thin-film silicon photovoltaics. Sol Energy Mater Sol Cells. 2013;119:311–316.
  • Photovoltaics report . Fraunhofer ISE; 2016.
  • Green MA . The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl. 2009;17:183–189.
  • Zhao J , Wang A , Green MA . 24·5% efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates. Prog Photovolt Res Appl. 1999;7:471–474.
  • Press release – Kaneka – NEDO: world’s highest conversion efficiency of 26.33% achieved in a crystalline silicon solar cell [Internet]. [cited 2017 May 4]. Available from: http://www.nedo.go.jp/english/news/AA5en_100109.html
  • Richter A , Hermle M , Glunz SW . Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovolt. 2013;3:1184–1191.
  • Essig S , Steiner MA , Allebé C , et al . Realization of GaInP/Si dual-junction solar cells with 29.8% 1-Sun efficiency. IEEE J Photovolt. 2016;6:1012–1019.
  • Yu Z (Jason) , Leilaeioun M , Holman Z . Selecting tandem partners for silicon solar cells. Nat Energy. 2016;1:16137.
  • Bush KA , Palmstrom AF , Yu ZJ , et al . 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy. 2017;2:17009.
  • White TP , Lal NN , Catchpole KR . Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency. IEEE J Photovolt. 2014;4:208–214.
  • Ward JS , Remo T , Horowitz K , et al . Techno-economic analysis of three different substrate removal and reuse strategies for III-V solar cells. Prog Photovolt Res Appl. 2016;24:1284–1292.
  • Voncken MMA , Schermer J , Maduro G , et al . Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process. Mater Sci Eng B. 2002;95:242–248.
  • Cheng C-W , Shiu K-T , Li N , et al . Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat Commun. 2013;4:1577.
  • Yablonovitch E . Statistical ray optics. J Opt Soc Am. 1982;72:899.
  • Collin S , Goffard J , Cattoni A , et al . Multi-resonant light trapping: new paradigm, new limits. IEEE; 2015 [cited 2017 Oct 6]. p. 1–3. Available from: http://ieeexplore.ieee.org/document/7356159/
  • Massiot I , Vandamme N , Bardou N , et al . Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics. 2014;1:878–884.
  • Collin S , Vandamme N , Goffard J , et al . Ultrathin GaAs solar cells with a nanostructured back mirror. IEEE; 2015 [cited 2017 Oct 6]. p. 1–3. Available from: http://ieeexplore.ieee.org/document/7356352/
  • Chen HL , Cattoni A , Vandamme N , et al . 200 nm-thick GaAs solar cells with a nanostructured silver mirror. 2016 IEEE 43rd Photovolt Spec Conf PVSC. 2016;3506–3509.
  • Sugiyama M , Wang Y , Fujii H , et al . A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration. J Phys Appl Phys. 2013;46:024001.
  • Okada Y , Yoshida K , Shoji Y , et al . Recent progress on quantum dot intermediate band solar cells. IEICE Electron Express. 2013;10:20132007–20132007.
  • Behaghel B , Tamaki R , Vandamme N , et al . Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell. Appl Phys Lett. 2015;106:081107.
  • Ross RT , Nozik AJ . Efficiency of hot-carrier solar energy converters. J Appl Phys. 1982;53:3813–3818.
  • Würfel P . Solar energy conversion with hot electrons from impact ionisation. Sol Energy Mater Sol Cells. 1997;46:43–52.
  • Shabaev A , Efros AL , Nozik AJ . Multiexciton generation by a single photon in nanocrystals. Nano Lett. 2006;6:2856–2863.
  • Shah J , Leite RCC . Radiative recombination from photoexcited hot carriers in GaAs. Phys Rev Lett. 1969;22:1304–1307.
  • Othonos A . Probing ultrafast carrier and phonon dynamics in semiconductors. J Appl Phys. 1998;83:1789–1830.
  • Klemens P . Anharmonic decay of optical phonons. Phys Rev. 1966;148:845–848.
  • Shah J . Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid-State Electron. 1978;21:43–50.
  • Ryan J , Taylor R , Turberfield A , et al . Time-resolved photoluminescence of two-dimensional hot carriers in GaAs-AlGaAs heterostructures. Phys Rev Lett. 1984;53:1841–1844.
  • Nozik AJ , Parsons CA , Dunlavy DJ , et al . Dependence of hot carrier luminescence on barrier thickness in GaAs/AlGaAs superlattices and multiple quantum wells. Solid State Commun. 1990;75:297–301.
  • Rosenwaks Y , Hanna M , Levi D , et al . Hot-carrier cooling in GaAs: quantum wells versus bulk. Phys Rev B. 1993;48:14675–14678.
  • Nozik AJ . Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu Rev Phys Chem. 2001;52:193–231.
  • Conibeer GJ , König D , Green MA , et al . Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films. 2008;516:6948–6953.
  • Le Bris A , Lombez L , Laribi S , et al . Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers. Energy Environ Sci. 2012;5:6225.
  • Dimmock JAR , Kauer M , Stavrinou PN , et al . A metallic hot carrier photovoltaic cell. 2015 [cited 2015 Apr 13]. p. 935810–935818. DOI:10.1117/12.2077573
  • Yang Y , Ostrowski DP , France RM , et al . Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat Photonics. 2016;10:53–59.
  • Li M , Bhaumik S , Goh TW , et al . Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat Commun. [Internet]. 2017 [cited 2017 Mar 7];8. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309769/
  • Wurfel P . The chemical potential of radiation. J Phys C Solid State Phys. 1982;15:3967–3985.
  • Hirst LC , Fujii H , Wang Y , et al . Hot carriers in quantum wells for photovoltaic efficiency enhancement. IEEE J Photovolt. 2014;4:244–252.
  • Rodière J , Lombez L , Corre AL , et al . Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures. Appl Phys Lett. 2015;106:183901.
  • Le Bris A . Feasibility study of a hot carrier photovoltaic device [Internet] [PhD thesis]. Ecole Centrale Paris; 2011 [cited 2014 May 31]. Available from: http://pastel.archives-ouvertes.fr/pastel-00712642
  • Gibelli F , Lombez L , Guillemoles J-F . Two carrier temperatures non-equilibrium generalized Planck law for semiconductors. Phys B Condens Matter. 2016;498:7–14.
  • Gibelli F , Lombez L , Guillemoles J-F . Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations. J Phys Condens Matter. 2017;29:06LT02.
  • Dimmock JAR , Day S , Kauer M , et al . Demonstration of a hot-carrier photovoltaic cell. Prog Photovolt Res Appl. 2014;22:151–160.
  • Hirst L , Fuhrer M , Farrell DJ , et al . Hot carrier dynamics in InGaAs, GaAsP quantum well solar cells. 2011 37th IEEE Photovolt Spec Conf PVSC. 2011;003302–003306.
  • Levard H . Phonon engineering for hot-carrier solar cells [Internet]. Paris: Pierre and Marie Curie (Paris VI); 2015. Available from: https://tel.archives-ouvertes.fr/tel-01123624
  • Gibelli F , Julian A , Jehl Li Kao Z , et al . Third generation hot carrier solar cells: paths towards innovative energy contacts structures. 2016 [cited 2016 Aug 25]. p. 97430S–1–97430S–11. DOI:10.1117/12.2213562
  • Le Bris A , Guillemoles J-F . Hot carrier solar cells: achievable efficiency accounting for heat losses in the absorber and through contacts. Appl Phys Lett. 2010;97:113506.
  • O’Dwyer MF , Humphrey TE , Lewis RA , et al . Electronic and thermal transport in hot carrier solar cells with low-dimensional contacts. Microelectron J. 2008;39:656–659.
  • Takeda Y , Ichiki A , Kusano Y , et al . Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells. J Appl Phys. 2015;118:124510.
  • Conibeer GJ , Jiang C-W , König D , et al . Selective energy contacts for hot carrier solar cells. Thin Solid Films. 2008;516:6968–6973.
  • Yagi S , Okada Y . Fabrication of resonant tunneling structures for selective energy contact of hot carrier solar cell based on III-V semiconductors. 2010 35th IEEE Photovolt Spec Conf PVSC. 2010;001213–001216.
  • Yagi S , Oshima R , Okada Y . Evaluation of selective energy contact for hot carrier solar cells based on III-V semiconductors. 2009 34th IEEE Photovolt Spec Conf PVSC. 2009;000530–000533.
  • Farrell DJ , Takeda Y , Nishikawa K , et al . A hot-carrier solar cell with optical energy selective contacts. Appl Phys Lett. 2011;99:111102.
  • Hosack HH . Double barrier transmission characteristics. J Appl Phys. 1965;36:1281–1285.
  • Ricco B , Azbel MY . Physics of resonant tunneling. The one-dimensional double-barrier case. Phys Rev B. 1984;29:1970–1981.
  • Allen SS , Richardson SL . Theoretical investigations of resonant tunneling in asymmetric multibarrier semiconductor heterostructures in an applied constant electric field. Phys Rev B. 1994;50:11693–11700.
  • Jehl Z , Julian A , Miyashita N , et al . Insights on energy selective contacts for thermal energy harvesting using double resonant tunneling contacts and numerical modeling. Superlattices Microstruct. 2016;100:749–756.
  • Jehl Z , Suchet D , Julian A , et al . Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells. Proc SPIE Vol [Internet]. 2017 [cited 2017 Mar 30]. p. 100990N–1. Available from: http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/91699/100990n.pdf
  • O’Regan B , Grätzel M . A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–740.
  • Nazeeruddin MK , Kay A , Rodicio I , et al . Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc. 1993;115:6382–6390.
  • Mathew S , Yella A , Gao P , et al . Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem. 2014;6:242–247.
  • Bach U , Lupo D , Comte P , et al . Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 1998;395:583–585.
  • Burschka J , Dualeh A , Kessler F , et al . Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc. 2011;133:18042–18045.
  • Lee MM , Teuscher J , Miyasaka T , et al . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338:643–647.
  • Cao Y , Saygili Y , Ummadisingu A , et al . 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat Commun. 2017;8:15390.
  • Kakiage K , Aoyama Y , Yano T , et al . Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun. 2015;51:15894–15897.
  • Zhang X , Xu Y , Giordano F , et al . Molecular engineering of potent sensitizers for very efficient light harvesting in thin-film solid-state dye-sensitized solar cells. J Am Chem Soc. 2016;138:10742–10745.
  • Yella A , Mai C-L , Zakeeruddin SM , et al . Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew Chem Int Ed. 2014;53:2973–2977.
  • Lee C-P , Lin RY-Y , Lin L-Y , et al . Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv. 2015;5:23810–23825.
  • De Sousa S , Ducasse L , Kauffmann B , et al . Functionalization of a ruthenium–diacetylide organometallic complex as a next-generation push–pull chromophore. Chem Eur J. 2014;20:7017–7024.
  • De Sousa S , Lyu S , Ducasse L , et al . Tuning visible-light absorption properties of Ru–diacetylide complexes: simple access to colorful efficient dyes for DSSCs. J Mater Chem A. 2015;3:18256–18264.
  • Hamamura T , Lyu S , Segawa H , et al . To be submitted.
  • Horiuchi T , Yashiro T , Kawamura R , et al . Indoline dyes with benzothiazole unit for dye-sensitized solar cells. Chem Lett. 2016;45:517–519.
  • Steigerwald ML , Alivisatos AP , Gibson JM , et al . Surface derivatization and isolation of semiconductor cluster molecules. J Am Chem Soc. 1988;110:3046–3050.
  • Alivisatos AP . Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100:13226–13239.
  • Caruge JM , Halpert JE , Wood V , et al . Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photonics. 2008;2:247–250.
  • Huynh WU , Dittmer JJ , Alivisatos AP . Hybrid nanorod-polymer solar cells. Science. 2002;295:2425–2427.
  • Bruchez M , Moronne M , Gin P , et al . Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–2016.
  • Luther JM , Law M , Song Q , et al . Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-Ethanedithiol. ACS Nano. 2008;2:271–280.
  • Carey GH , Abdelhady AL , Ning Z , et al . Colloidal quantum dot solar cells. Chem Rev. 2015;115:12732–12763.
  • McDonald SA , Konstantatos G , Zhang S , et al . Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater. 2005;4:138–142.
  • Clifford JP , Johnston KW , Levina L , et al . Schottky barriers to colloidal quantum dot films. Appl Phys Lett. 2007;91:253117.
  • Luther JM , Law M , Beard MC , et al . Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008;8:3488–3492.
  • Pattantyus-Abraham AG , Kramer IJ , Barkhouse AR , et al . Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano. 2010;4:3374–3380.
  • Luther JM , Gao J , Lloyd MT , et al . Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater. 2010;22:3704–3707.
  • Lan X , Masala S , Sargent EH . Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat Mater. 2014;13:233–240.
  • Liu M , Voznyy O , Sabatini R , et al . Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater. 2017;16:258–263.
  • Giorgi G , Fujisawa J-I , Segawa H , et al . Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J Phys Chem Lett. 2013;4:4213–4216.
  • Yang Z , Janmohamed A , Lan X , et al . Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 2015;15:7539–7543.
  • Hou B , Cho Y , Kim BS , et al . Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett. 2016;1:834–839.
  • Kramer IJ , Zhitomirsky D , Bass JD , et al . Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Adv Mater. 2012;24:2315–2319.
  • Jean J , Chang S , Brown PR , et al . ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv Mater. 2013;25:2790–2796.
  • Wang H , Kubo T , Nakazaki J , et al . PbS-quantum-dot-based heterojunction solar cells utilizing ZnO nanowires for high external quantum efficiency in the near-infrared region. J Phys Chem Lett. 2013;4:2455–2460.
  • Moreels I , Lambert K , Smeets D , et al . Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano. 2009;3:3023–3030.
  • Kawawaki T , Wang H , Kubo T , et al . Efficiency enhancement of PbS quantum dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano. 2015;9:4165–4172.
  • Wang H , Gonzalez-Pedro V , Kubo T , et al . Enhanced carrier transport distance in colloidal PbS quantum-dot-based solar cells using ZnO nanowires. J Phys Chem C. 2015;119:27265–27274.
  • Wang X , Koleilat GI , Tang J , et al . Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nat Photonics. 2011;5:480–484.
  • Crisp RW , Pach GF , Kurley JM , et al . Tandem solar cells from solution-processed CdTe and PbS quantum dots using a ZnTe–ZnO tunnel junction. Nano Lett. 2017;17:1020–1027.
  • Gao J , Luther JM , Semonin OE , et al . Quantum dot size dependent J−V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 2011;11:1002–1008.
  • Wang H , Kubo T , Nakazaki J , et al . Solution-Processed Colloidal-Quantum-Dot Solar Cells Operating in the Infrared Region, International Conference Asia-Pacific Hybrid and Organic Photovoltaics 2018 (AP-HOPV18) Kitakyūshū-shi, Japan, 2018 Jan 28–30, Invited Speaker presentation 072. Available from: http://www.nanoge.org/proceedings/AP-HOPV18/59df34289faa23137c95eadc
  • Wang H , Kubo T , Nakazaki J , et al . PbS colloidal quantum dot/ZnO-based bulk-heterojunction solar cells with high stability under continuous light soaking. Phys Status Solidi RRL Rapid Res Lett. 2014;8:961–965.
  • Bernechea M , Miller NC , Xercavins G , et al . Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat Photonics. 2016;10:521–525.
  • Wang G , Wei H , Shi J , et al . Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy. 2017;35:17–25.
  • Yu G , Gao J , Hummelen JC , et al . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789–1791.
  • Zhao W , Li S , Yao H , et al . Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc. 2017;139:7148–7151.
  • Berny S , Blouin N , Distler A , et al . Solar trees: first large-scale demonstration of fully solution coated, semi-transparent, flexible organic photovoltaic modules. Adv Sci. 2015;3:1–7.
  • Espinosa N , García-Valverde R , Urbina A , et al . A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Sol Energy Mater Sol Cells. 2011;95:1293–1302.
  • Lizin S , Van Passel S , De Schepper E , et al . Life cycle analyses of organic photovoltaics: a review. Energy Environ Sci. 2013;6:3136.
  • Lee HKH , Li Z , Durrant JR , et al . Is organic photovoltaics promising for indoor applications? Appl Phys Lett. 2016;108:253301.
  • Shaheen SE , Brabec CJ , Sariciftci NS , et al . 2.5% efficient organic plastic solar cells. Appl Phys Lett. 2001;78:841–843.
  • Knol J , Hummelen JC , Van Hal PA , et al . Efficient Methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed. 2003;42:3371–3375.
  • Subbiah J , Beaujuge PM , Choudhury KR , et al . Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance. Org Electron Phys Mater Appl. 2010;11:955–958.
  • Zhao GJ , He YJ , Li Y . 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and Indene-C60 bisadduct by device optimization. Adv Mater. 2010;22:4355–4358.
  • Zhao J , Li Y , Yang G , et al . Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy. 2016;1:15027.
  • Scharber MC . On the Efficiency limit of conjugated polymer:fullerene-based bulk heterojunction solar cells. Adv Mater. 2016;28:1994–2001.
  • Bertho S , Janssen G , Cleij TJ , et al . Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol Energy Mater Sol Cells. 2008;92:753–760.
  • Holliday S , Ashraf RS , Nielsen CB , et al . A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J Am Chem Soc. 2015;137:898–904.
  • Holliday S , Ashraf RS , Wadsworth A , et al . High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun. 2016;7:11585.
  • Baran D , Kirchartz T , Wheeler S , et al . Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Env Sci. 2016;9:3783–3793.
  • Zhao W , Qian D , Zhang S , et al . Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater. 2016;28:4734–4739.
  • Facchetti A . Polymer donor – polymer acceptor (all-polymer) solar cells. Mater Today. 2013;16:123–132.
  • Gao L , Zhang Z-G , Xue L , et al . All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv Mater. 2016;28:1884–1890.
  • Gevorgyan SA , Espinosa N , Ciammaruchi L , et al . Baselines for lifetime of organic solar cells. Adv Energy Mater. 2016;6:1600910.
  • White MS , Olson DC , Shaheen SE , et al . Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl Phys Lett. 2006;89:143517.
  • Li G , Chu C-W , Shrotriya V , et al . Efficient inverted polymer solar cells. Appl Phys Lett. 2006;88:253503.
  • Hau SK , Yip H-L , Baek NS , et al . Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett. 2008;92:253301.
  • Peters CH , Sachs-Quintana IT , Mateker WR , et al . The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv Mater. 2012;24:663–668.
  • Voroshazi E , Cardinaletti I , Conard T , et al . Light-induced degradation of polymer: fullerene photovoltaic devices: an intrinsic or material-dependent failure mechanism? Adv Energy Mater. 2014;4:1400848.
  • Pearson AJ , Hopkinson PE , Couderc E , et al . Critical light instability in CB/DIO processed PBDTTT-EFT:PC71BM organic photovoltaic devices. Org Electron. 2016;30:225–236.
  • Heumueller T , Mateker WR , Distler A , et al . Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Env Sci. 2016;9:247–256.
  • Heumueller T , Burke TM , Mateker WR , et al . Disorder-induced open-circuit voltage losses in organic solar cells during photoinduced burn-in. Adv Energy Mater. 2015;5:1500111.
  • Heumueller T , Mateker WR , Sachs-Quintana IT , et al . Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity. Energy Environ Sci. 2014;7:2974–2980.
  • Derue L , Dautel O , Tournebize A , et al . Thermal stabilisation of polymer-fullerene bulk heterojunction morphology for efficient photovoltaic solar cells. Adv Mater. 2014;26:5831–5838.
  • Cha H , Wu J , Wadsworth A , et al . An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv Mater. 2017;1701156:1–8.
  • Gasparini N , Salvador M , Strohm S , et al . Burn-in free nonfullerene-based organic solar cells. Adv Energy Mater. 2017;7:1700770.
  • Schmidt-Hansberg B , Sanyal M , Grossiord N , et al . Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer–fullerene solar cells. Sol Energy Mater Sol Cells. 2012;96:195–201.
  • Czolk J , Landerer D , Koppitz M , et al . Highly efficient, mechanically flexible, semi-transparent organic solar cells doctor bladed from non-halogenated solvents. Adv Mater Technol. 2016;1:1600184.
  • Landfester K , Montenegro R , Scherf U , et al . Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv Mater. 2002;14:651–655.
  • Kietzke T , Neher D , Landfester K , et al . Novel approaches to polymer blends based on polymer nanoparticles. Nat Mater. 2003;2:408–412.
  • Kietzke T , Neher D , Kumke M , et al . A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices. Macromolecules. 2004;37:4882–4890.
  • Stapleton A , Vaughan B , Xue B , et al . A multilayered approach to polyfluorene water-based organic photovoltaics. Sol Energy Mater Sol Cells. 2012;102:114–124.
  • Andersen TR , Larsen-Olsen TT , Andreasen B , et al . Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. ACS Nano. 2011;5:4188–4196.
  • Gehan TS , Bag M , Renna LA , et al . Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. Nano Lett. 2014;14:5238–5243.
  • Ulum S , Holmes N , Barr M , et al . The role of miscibility in polymer: fullerene nanoparticulate organic photovoltaic devices. Nano Energy. 2013;2:897–905.
  • Holmes NP , Burke KB , Sista P , et al . Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes. Sol Energy Mater Sol Cells. 2013;117:437–445.
  • Holmes NP , Marks M , Kumar P , et al . Nano-pathways: bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy. 2016;19:495–510.
  • Cabanetos C , El Labban A , Bartelt JA , et al . Linear side chains in benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc. 2013;135:4656–4659.
  • D’Olieslaeger L , Pirotte G , Cardinaletti I , et al . Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org Electron. 2016;42:42–46.
  • Ganachaud F , Katz JL . Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 2005;6:209–216.
  • Gärtner S , Christmann M , Sankaran S , et al . Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv Mater. 2014;26:6653–6657.
  • Sankaran S , Glaser K , Gärtner S , et al . Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing. Org Electron. 2016;28:118–122.
  • Aubry J , Ganachaud F , Cohen Addad J-P , et al . Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir. 2009;25:1970–1979.
  • Couto R , Chambon S , Aymonier C , et al . Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices. Chem Commun. 2015;51:1008–1011.
  • Chambon S , Schatz C , Sébire V , et al . Organic semiconductor core–shell nanoparticles designed through successive solvent displacements. Mater Horiz. 2014;1:431–438.
  • Kojima A , Teshima K , Shirai Y , et al . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–6051.
  • Grätzel M . The light and shade of perovskite solar cells. Nat Mater. 2014;13:838–842.
  • Park N-G . Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015;18:65–72.
  • Jeon NJ , Noh JH , Yang WS , et al . Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517:476–480.
  • Green MA , Emery K , Hishikawa Y , et al . Solar cell efficiency tables (version 48). Prog Photovolt Res Appl. 2016;24:905–913.
  • Snaith HJ , Abate A , Ball JM , et al . Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett. 2014;5:1511–1515.
  • Saliba M , Matsui T , Seo J-Y , et al . Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9:1989–1997.
  • Anaraki EH , Kermanpur A , Steier L , et al . Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci. 2016;9:3128–3134.
  • Giordano F , Abate A , Baena JPC , et al . Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat Commun. 2016;7:10379.
  • Heo JH , Han HJ , Kim D , et al . Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci. 2015;8:1602–1608.
  • Yoon H , Kang SM , Lee J-K , et al . Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ Sci. 2016;9:2262–2266.
  • van Reenen S , Kemerink M , Snaith HJ . Modeling anomalous hysteresis in perovskite solar cells. J Phys Chem Lett. 2015;6:3808–3814.
  • Neukom MT , Züfle S , Knapp E , et al . Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Sol Energy Mater Sol Cells. 2017;169:159–166.
  • Calado P , Telford AM , Bryant D , et al . Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun. 2016;7:13831.
  • Cojocaru L , Uchida S , Jayaweera PVV , et al . Origin of the hysteresis in I-V curves for planar structure perovskite solar cells rationalized with a surface boundary-induced capacitance model. Chem Lett. 2015;44:1750–1752.
  • Almosni S , Cojocaru L , Li D , et al . Tunneling-assisted trapping as one of the possible mechanisms for origin of hysteresis in perovskite solar cells; a study with the simulation software SILVACO ATLAS. Energy Technol. 2017;5:1767–1774.
  • Wojciechowski K , Stranks SD , Abate A , et al . Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. ACS Nano. 2014;8:12701–12709.
  • Ravishankar S , Almora O , Echeverría-Arrondo C , et al . Surface polarization model for the dynamic hysteresis of perovskite solar cells. J Phys Chem Lett. 2017;8:915–921.
  • Park N-G . Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett. 2013;4:2423–2429.
  • Cojocaru L , Uchida S , Sanehira Y , et al . Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells. Chem Lett. 2015;44:674–676.
  • Jeon NJ , Noh JH , Kim YC , et al . Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater. 2014;13:897–903.
  • Salim T , Sun S , Abe Y , et al . Perovskite-based solar cells: impact of morphology and device architecture on device performance. J Mater Chem A. 2015;3:8943–8969.
  • Saliba M , Orlandi S , Matsui T , et al . A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy. 2016;1:15017.
  • Eperon GE , Leijtens T , Bush KA , et al . Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science. 2016;aaf9717.
  • McGehee Group – Stanford Materials Science and Engineering [Internet]. [cited 2017 Feb 17]. Available from: http://web.stanford.edu/group/mcgehee/research.html
  • Imec news-imec [Internet]. [cited 2017 Feb 17]. Available from: https://web.archive.org/web/20160928153333/http://www2.imec.be/be_en/press/imec-news/perovskite-eng.html
  • Kinoshita T , Nonomura K , Jeon NJ , et al . Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat Commun. 2015;6:8834.
  • Lau CFJ , Deng X , Ma Q , et al . CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett. 2016;1:573–577.
  • Deng Y , Dong Q , Bi C , et al . Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Adv Energy Mater. 2016;6:1600372.
  • Li Y , Meng L , Yang Y (Michael) , et al . High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun. 2016;7:10214.
  • Liu M , Johnston MB , Snaith HJ . Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013;501:395–398.
  • Kim J , Yun JS , Cho Y , et al . Overcoming the Challenges of Large-Area High-Efficiency Perovskite Solar Cells. ACS Energy Letters. 2017;2:1978–1984.
  • Zheng J , Zhang M , Lau CFJ , et al . Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells. 2017;168:165–171.
  • Li F , Liu M . Recent efficient strategies for improving the moisture stability of perovskite solar cells. J Mater Chem A. 2017;5:15447–15459.
  • Ito S , Tanaka S , Manabe K , et al . Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C. 2014;118:16995–17000.
  • Park N-G , Grätzel M , Miyasaka T , editors. Organic-inorganic halide perovskite photovoltaics [Internet]. Cham: Springer International Publishing; 2016 [cited 2016 Aug 31]. Available from: http://link.springer.com/10.1007/978-3-319-35114-8
  • Calió L , Kazim S , Grätzel M , et al . Hole-transport materials for perovskite solar cells. Angew Chem Int Ed. 2016;55:14522–14545.
  • Geffroy C , Grana E , Mumtaz M , et al . Functionalized poly(9-vinylcarbazole) as a Hole Transporting Material in Perovskite Solar Cells Having Improved Stability. Poster session presented at, MRS Fall Meeting & Exhibit; 2017 Nov 26-Dec 1, Boston. United States; 2017. https://mrsfall.zerista.com/poster/member/109246
  • Shin SS , Yeom EJ , Yang WS , et al . Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science. 2017;356:167–171.
  • Dong X , Fang X , Lv M , et al . Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A. 2015;3:5360–5367.
  • Niu G , Li W , Meng F , et al . Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A. 2014;2:705–710.
  • Tsai H , Nie W , Blancon J-C , et al . High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature. 2016;536:312–316.
  • Würfel P . The chemical potential of radiation. J Phys C Solid State Phys. 1982;15:3967–3985.
  • Feuerbacher B , Würfel P . Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes. J Phys Condens Matter. 1990;2:3803–3810.
  • Rau U . Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B. 2007;76:085303.
  • Delamarre A , Lombez L , Watanabe K , et al . Experimental demonstration of optically determined solar cell current transport efficiency map. IEEE J Photovolt. 2016;6:528–531.
  • Rau U . Superposition and reciprocity in the electroluminescence and photoluminescence of solar cells. IEEE J Photovolt. 2012;2:169–172.
  • Donolato C . A reciprocity theorem for charge collection. Appl Phys Lett. 1985;46:270–272.
  • Donolato C . An alternative proof of the generalized reciprocity theorem for charge collection. J Appl Phys. 1989;66:4524–4525.
  • Green MA . Generalized relationship between dark carrier distribution and photocarrier collection in solar cells. J Appl Phys. 1997;81:268–271.
  • Markvart T . Relationship between dark carrier distribution and photogenerated carrier collection in solar cells. IEEE Trans Electron Devices. 1996;43:1034–1036.
  • Green MA . Radiative efficiency of state-of-the-art photovoltaic cells. Prog Photovolt Res Appl. 2012;20:472–476.
  • Green MA , Zhao J , Wang A , et al . Efficient silicon light-emitting diodes. Nature. 2001;412:805–808.
  • Geisz JF , Steiner MA , García I , et al . Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett. 2013;103:041118.
  • Kirchartz T , Rau U . Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells. J Appl Phys. 2007;102:104510.
  • Unold T , Berkhahn D , Dimmler B , et al . Open circuit voltage and loss mechanisms in polycristalline CIGS heterodiodes from photoluminescence studies. Proc 16th Eur Photovolt Sol Energy Conf Exhib. Glasgow; 2000;736.
  • Mitchell B , Trupke T , Weber JW , et al . Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios. J Appl Phys. 2011;109:083111.
  • Sio HC , Xiong Z , Trupke T , et al . Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence. Appl Phys Lett. 2012;101:082102.
  • Trupke T , Mitchell B , Weber JW , et al . Photoluminescence imaging for photovoltaic applications. Energy Procedia. 2012;15:135–146.
  • Fuyuki T , Kondo H , Yamazaki T , et al . Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Appl Phys Lett. 2005;86:262108.
  • Trupke T , Pink E , Bardos RA , et al . Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging. Appl Phys Lett. 2007;90:093506.
  • Bauer GH , Gütay L , Fuhrmann R . Extraction of features from 2-d laterally sub-micron resolved photoluminescence in Cu(In,Ga)Se2 absorbers by Fourier transforms and Minkowski-operations. Thin Solid Films. 2006;511–512:309–315.
  • Bauer GH , Gütay L . Lateral features of Cu(In0.7Ga0.3)Se2-heterodiodes in the μm-scale by confocal luminescence and focused light beam induced currents. Thin Solid Films. 2007;515:6127–6131.
  • Bothe K , Bauer GH , Unold T . Spatially resolved photoluminescence measurements on Cu(In,Ga)Se2 thin films. Thin Solid Films. 2002;403:453–456.
  • Gütay L , Pomraenke R , Lienau C , et al . Subwavelength inhomogeneities in Cu(In,Ga)Se2 thin films revealed by near-field scanning optical microscopy. Phys Status Solidi A. 2009;206:1005–1008.
  • Delamarre A , Paire M , Guillemoles J-F , et al . Quantitative luminescence mapping of Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt Res Appl. 2015;23:1305–1312.
  • El-Hajje G , Ory D , Guillemoles J-F , et al . On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices. Appl Phys Lett. 2016;109:022104.
  • Hameiri Z , Mahboubi Soufiani A , Juhl MK , et al . Photoluminescence and electroluminescence imaging of perovskite solar cells. Prog Photovolt Res Appl. 2015;23:1697–1705.
  • Soufiani AM , Tayebjee MJY , Meyer S , et al . Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. J Appl Phys. 2016;120:035702.
  • Toprasertpong K , Inoue T , Delamarre A , et al . Electroluminescence-based quality characterization of quantum wells for solar cell applications. J Cryst Growth [Internet]. 2016 [cited 2017 Jan 3]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022024816306546
  • Delamarre A , Lombez L , Guillemoles J-F . Contactless mapping of saturation currents of solar cells by photoluminescence. Appl Phys Lett. 2012;100:131108.
  • Bokalič M , Krašovec UO , Topič M . Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells: spatial characterisation of DSSCs by electroluminescence. Prog Photovolt Res Appl. 2012;21:1176–1180.
  • Nesswetter H , Dyck W , Lugli P , et al . Luminescence based series resistance mapping of III-V multijunction solar cells. J Appl Phys. 2013;114:194510.
  • Kirchartz T , Rau U , Hermle M , et al . Internal voltages in GaInP∕GaInAs∕Ge multijunction solar cells determined by electroluminescence measurements. Appl Phys Lett. 2008;92:123502.
  • Roensch S , Hoheisel R , Dimroth F , et al . Subcell I-V characteristic analysis of GaInP/GaInAs/Ge solar cells using electroluminescence measurements. Appl Phys Lett. 2011;98:251113.
  • Zhu L , Yoshita M , Chen S , et al . Characterizations of radiation damage in multijunction solar cells focused on subcell internal luminescence quantum yields via absolute electroluminescence measurements. IEEE J Photovolt. 2016;6:777–782.
  • Chen S , Zhu L , Yoshita M , et al . Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements. Sci Rep. 2015;5:7836.
  • Karcher C , Helmers H , Schachtner M , et al . Temperature-dependent electroluminescence and voltages of multi-junction solar cells: EL and voltages of multi-junction solar cells. Prog Photovolt Res Appl. 2014;22:757–763.
  • Nesswetter H , Lugli P , Bett AW , et al . Electroluminescence and photoluminescence characterization of multijunction solar cells. IEEE J Photovolt. 2013;3:353–358.
  • Alonso-Álvarez D , Ekins-Daukes N . Photoluminescence-based current-voltage characterization of individual subcells in multijunction devices. IEEE J Photovolt. 2016;6:1004–1011.
  • Helbig A , Kirchartz T , Schaeffler R , et al . Quantitative electroluminescence analysis of resistive losses in Cu(In,Ga)Se2 thin-film modules. Sol Energy Mater Sol Cells. 2010;94:979–984.
  • Paire M , Lombez L , Guillemoles J-F , et al . Measuring sheet resistance of CIGS solar cell’s window layer by spatially resolved electroluminescence imaging. Thin Solid Films. 2011;519:7493–7496.
  • Kampwerth H , Trupke T , Weber JW , et al . Advanced luminescence based effective series resistance imaging of silicon solar cells. Appl Phys Lett. 2008;93:202102.
  • Wong J , Green M . From junction to terminal: extended reciprocity relations in solar cell operation. Phys Rev B. 2012;85:235205.
  • Wong J , Sridharan R , Wang YC , et al . Differential electroluminescence imaging and the current transport efficiency of silicon wafer solar cells. Photovolt Spec Conf PVSC 2014 IEEE 40th [Internet]. IEEE; 2014 [cited 2015 Apr 8]. p. 0975–0979. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6925078
  • Rau U , Huhn V , Stoicescu L , et al . Photocurrent collection efficiency mapping of a silicon solar cell by a differential luminescence imaging technique. Appl Phys Lett. 2014;105:163507.
  • Huhn V , Pieters BE , Augarten Y , et al . Imaging photocurrent collection losses in solar cells. Appl Phys Lett. 2016;109:223502.
  • Kirchartz T , Rau U , Kurth M , et al . Comparative study of electroluminescence from Cu(In,Ga)Se2 and Si solar cells. Thin Solid Films. 2007;515:6238–6242.
  • Kirchartz T , Helbig A , Rau U . Note on the interpretation of electroluminescence images using their spectral information. Sol Energy Mater Sol Cells. 2008;92:1621–1627.
  • Delamarre A , Lombez L , Guillemoles J-F . Characterization of solar cells using electroluminescence and photoluminescence hyperspectral images. J Photonics Energy. 2012;2:027004.
  • Haynes JR . Experimental proof of the existence of a new electronic complex in silicon. Phys Rev Lett. 1960;4:361–363.
  • Bauknecht A , Siebentritt S , Albert J , et al . Excitonic photoluminescence from CuGaSe2 single crystals and epitaxial layers: temperature dependence of the band gap energy. Jpn J Appl Phys. 2000;39:322.
  • Scheer R . Chalcogenide photovoltaics: physics, technologies, and thin film devices. Weinheim: Wiley-VCH; 2011.
  • Alonso-Álvarez D , Thomas T , Führer M , et al . InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells. Appl Phys Lett. 2014;105:083124.
  • Delamarre A , Fujii H , Watanabe K , et al . Investigation of carrier collection in multi-quantum well solar cells by luminescence spectra analysis. In: Freundlich A , Guillemoles J-F , Sugiyama M , editors. SPIE Proceeding 9358 Phys Simul Photonic Eng Photovolt Devices IV [Internet]. 2015 [cited 2015 May 8]. p. 93580Y. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2081303
  • Basore PA . Extended spectral analysis of internal quantum efficiency. Conf Rec Twenty Third IEEE Photovolt Spec Conf 1993. 1993;147–152.
  • Donolato C . Reconstruction of the charge collection probability in a solar cell from internal quantum efficiency measurements. J Appl Phys. 2001;89:5687–5695.
  • Parisi J , Hilburger D , Schmitt M , et al . Quantum efficiency and admittance spectroscopy on Cu(In,Ga)Se2 solar cells. Sol Energy Mater Sol Cells. 1998;50:79–85.
  • Bahraman A , Oldham WG . The temperature variation of the electron diffusion length and the internal quantum efficiency in GaAs electroluminescent diodes. Solid-State Electron. 1972;15:907–917.
  • Würfel P , Trupke T , Puzzer T , et al . Diffusion lengths of silicon solar cells from luminescence images. J Appl Phys. 2007;101:123110.
  • Bokalič M , Pieters BE , Gerber A , et al . Bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence: bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence. Prog Photovolt Res Appl. [Internet]. 2016 [cited 2016 Dec 19]; Available from: http://doi.wiley.com/10.1002/pip.2846
  • Fujii H , Katoh T , Toprasertpong K , et al . Thickness-modulated InGaAs/GaAsP superlattice solar cells on vicinal substrates. J Appl Phys. 2015;117:154501.
  • Andreasen B , Tanenbaum DM , Hermenau M , et al . TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration. Phys Chem Chem Phys. 2012;14:11780–11799.
  • Yadav P , Bouttemy M , Martinez E , et al . Analytical study of BAM (Al/GaAs) and photovoltaic samples using state-of-the-art auger nanoprobes. AIP Conf Proc. 2011;1395:113–117.
  • Martinez E , Yadav P , Bouttemy M , et al . Scanning Auger microscopy for high lateral and depth elemental sensitivity. J Electron Spectrosc Relat Phenom. 2013;191:86–91.
  • Senoner M , Maaßdorf A , Rooch H , et al . Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards. Anal Bioanal Chem. 2015;407:3211–3217.
  • Yadav PK , Martinez E , Bertin F , et al . Investigation of SiGe/Si heterostructures using state-of-the-art Auger Nanoprobes. IOP Conf Ser Mater Sci Eng. 2012;41:012020.
  • Barlow AJ , Portoles JF , Cumpson PJ . Observed damage during Argon gas cluster depth profiles of compound semiconductors. J Appl Phys. 2014;116:054908.
  • Aureau D , Ridier K , Bérini B , et al . Advanced analysis tool for X-ray photoelectron spectroscopy profiling: Cleaning of perovskite SrTiO3 oxide surface using argon cluster ion source. Thin Solid Films. 2016;601:89–92.
  • Ridier K , Aureau D , Bérini B , et al . Enhanced depth profiling of perovskite oxide: low defect levels induced in SrTiO3 by Argon cluster sputtering. J Phys Chem C. 2016;120:21358–21363.
  • Simpson R , White RG , Watts JF , et al . XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl Surf Sci. 2017;405:79–87.
  • Luisier M , Schenk A , Fichtner W , et al . Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: from boundary conditions to strain calculations. Phys Rev B. 2006;74:205323.
  • Svizhenko A , Anantram MP , Govindan TR , et al . Two-dimensional quantum mechanical modeling of nanotransistors. J Appl Phys. 2002;91:2343–2354.
  • Nehari K , Cavassilas N , Autran JL , et al . Influence of band structure on electron ballistic transport in silicon nanowire MOSFET’s: an atomistic study. Solid-State Electron. 2006;50:716–721.
  • Aeberhard U , Morf RH . Microscopic nonequilibrium theory of quantum well solar cells. Phys Rev B. 2008;77:125343.
  • Cavassilas N , Michelini F , Bescond M . On the local approximation of the electron–photon interaction self-energy. J Comput Electron. 2016;15:1233–1239.
  • Cavassilas N , Michelini F , Bescond M . Modeling of nanoscale solar cells: The Green’s function formalism. J Renew Sustain Energy. 2013;6:011203.
  • Cavassilas N , Gelly C , Michelini F , et al . Reflective Barrier optimization in ultrathin single-junction GaAs solar cell. IEEE J Photovolt. 2015;5:1621–1625.
  • Cavassilas N , Michelini F , Bescond M . Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl Phys Lett. 2014;105:063903.
  • Flexible photodiodes based on nitride core/shell p–n junction nanowires – ACS Applied Materials & Interfaces (ACS Publications) [Internet]. [cited 2017 Jun 23]. Available from: http://pubs.acs.org/doi/abs/10.1021/acsami.6b06414
  • Cavassilas N , Claveau Y , Bescond M , et al . Quantum electronic transport in polarization-engineered GaN/InGaN/GaN tunnel junctions. Appl Phys Lett. 2017;110:161106.
  • Fujii H , Toprasertpong K , Wang Y , et al . 100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells. Prog Photovolt Res Appl. 2014;22:784–795.
  • Toprasertpong K , Tanibuchi T , Fujii H , et al . Comparison of electron and hole mobilities in multiple quantum well solar cells using a time-of-flight technique. 2015 IEEE 42nd Photovolt Spec Conf PVSC. 2015;1–4.
  • Galvani B , Michelini F , Bescond M , et al . Minibands modeling in strain-balanced InGaAs/GaAs/GaAsP cells. 2017 [cited 2017 Jun 23]. p. 100990X–1–100990X–9. DOI:10.1117/12.2252074
  • Technology Roadmap – Hydrogen and Fuel Cells . IEA; 2015.
  • Nakamura A , Ota Y , Koike K , et al . A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl Phys Express. 2015;8:107101.
  • Jia J , Seitz LC , Benck JD , et al . Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun. 2016;7:13237.