4,257
Views
54
CrossRef citations to date
0
Altmetric
Focus on Carbon-neutral Energy Science and Technology

High-pressure torsion for new hydrogen storage materials

, &
Pages 185-193 | Received 07 Aug 2017, Accepted 29 Jan 2018, Published online: 19 Feb 2018

References

  • Valiev RZ , Estrin Y , Horita Z , et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58(4):33–39.10.1007/s11837-006-0213-7
  • Bridgman PW . Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev. 1935;48:825–847.10.1103/PhysRev.48.825
  • Edalati K , Horita Z . A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325–352.10.1016/j.msea.2015.11.074
  • Valiev RZ , Kaibyshev OA , Kuznetsov RI , et al. Low-temperature superplasticity of metallic materials. Dokl Akad Nauk SSSR. 1988;301:864–866.
  • Valiev RZ , Islamgaliev RK , Alexandrov IV . Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189.10.1016/S0079-6425(99)00007-9
  • Zhilyaev AP , Langdon TG . Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979.10.1016/j.pmatsci.2008.03.002
  • Pippan R , Scheriau S , Taylor A , et al. Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res. 2010;40:319–343.10.1146/annurev-matsci-070909-104445
  • Kusadome Y , Ikeda K , Nakamori Y , et al. Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scripta Mater. 2007;57:751–753.10.1016/j.scriptamat.2007.06.042
  • Skripnyuk VM , Rabkin E , Estrin Y , et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy. Acta Mater. 2004;52:405–414.10.1016/j.actamat.2003.09.025
  • Løken S , Solberg JK , Maehlen JP , et al. Nanostructured Mg–Mm–Ni hydrogen storage alloy: structure–properties relationship. J Alloys Compd. 2007;446–447:114–120.10.1016/j.jallcom.2006.11.200
  • Skripnyuk V , Buchman E , Rabkin E , et al. The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy. J Alloys Compd. 2007;436:99–106.10.1016/j.jallcom.2006.07.030
  • Ueda TT , Tsukahara M , Kamiya Y , et al. Preparation and hydrogen storage properties of Mg–Ni–Mg2Ni laminate composites. J Alloys Compd. 2005;386:253–257.10.1016/j.jallcom.2004.04.154
  • Suganuma K , Miyamura H , Kikuchi S , et al. Hydrogen storage properties of Mg–Al alloy prepared by super lamination technique. Adv Mater Res. 2007;26–28:857–860.10.4028/www.scientific.net/AMR.26-28
  • Takeichi N , Tanaka K , Tanaka H , et al. Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure. J Alloys Compd. 2007;446–447:543–548.10.1016/j.jallcom.2007.04.220
  • Dufour J , Huot J . Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg–Pd 2.5at.%. J Alloys Compd. 2007;439:L5–L7.10.1016/j.jallcom.2006.08.264
  • Leiva DR , Jorge AM , Ishikawa TT , et al. Nanoscale grain refinement and H-sorption properties of MgH2 processed by high-pressure torsion and other mechanical routes. Adv Eng Mater. 2010;12:786–792.10.1002/adem.201000030
  • Révész Á , Kánya Z , Verebélyi T , et al. The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30 . J Alloys Compd. 2010;504:83–88.10.1016/j.jallcom.2010.05.058
  • Révész Á , Kis-Tóth Á , Varga LK , et al. Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion. Int J Hydrogen Energy. 2012;37:5769–5776.10.1016/j.ijhydene.2011.12.160
  • Zou JX , Pérez-Brokate CF , Arruffat R , et al. Nanostructured bulk Mg + MgO composite synthesized through arc plasma evaporation and high-pressure torsion for H-storage application. Mater Sci Eng B. 2014;183:1–5.10.1016/j.mseb.2013.11.025
  • Grosdidier T , Fundenberger JJ , Zou JX , et al. Nanostructured Mg based hydrogen storage bulk materials prepared by high pressure torsion consolidation of arc plasma evaporated ultrafine powders. Int J Hydrogen Energy. 2015;40:16985–16991.10.1016/j.ijhydene.2015.06.159
  • Grill A , Horky J , Panigrahi A , et al. Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation. Int J Hydrogen Energy. 2015;40:17144–17152.10.1016/j.ijhydene.2015.05.145
  • Skripnyuk VM , Rabkin E , Estrin Y , et al. Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int J Hydrogen Energy. 2009;34:6320–6324.10.1016/j.ijhydene.2009.05.136
  • Krystian M , Zehetbauer MJ , Kropik H , et al. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J Alloys Compd. 2010;204:83–88.
  • Jorge AM Jr , Prokofiev E , Ferreira de Lima G , et al. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int J Hydrogen Energy. 2013;38:8306–8312.10.1016/j.ijhydene.2013.03.158
  • Révész Ádám , Gajdics M , Varga L , et al. Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int J Hydrogen Energy. 2014;39:9911–9917.10.1016/j.ijhydene.2014.01.059
  • Jorge AM Jr , Ferreira de Lima GF , Martins Triques MRM , et al. Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int J Hydrogen Energy. 2014;39:3810–3821.10.1016/j.ijhydene.2013.12.154
  • Huot J , Skryabina NY , Fruchart D . Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals. 2012;2:329–343.10.3390/met2030329
  • Asselli AAC , Leiva DR , Huot J , et al. Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy. Int J Hydrogen Energy. 2015;40:16971–16976.10.1016/j.ijhydene.2015.05.149
  • Tanaka K , Takeichi N , Tanaka H , et al. Investigation of micro-structural transition through disproportionation and recombination during hydrogenation and dehydrogenation in Mg/Cu super-laminates. J Mater Sci. 2008;43:3812–3816.10.1007/s10853-007-2134-4
  • Danaie M , Mauer C , Mitlin D , et al. Hydrogen storage in bulk Mg-Ti and Mg-stainless steel multilayer composites synthesized via accumulative roll-bonding (ARB). Int J Hydrogen Energy. 2011;36:3022–3036.10.1016/j.ijhydene.2010.12.006
  • Lang J , Huot J . A new approach to the processing of metal hydrides. J Alloys Compd. 2011;509:L18–L22.10.1016/j.jallcom.2010.09.173
  • Faisal M , Gupta A , Shervani S , et al. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid. Int J Hydrogen Energy. 2015;40:11498–11505.10.1016/j.ijhydene.2015.03.095
  • Edalati K , Yamamoto A , Horita Z , et al. High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scripta Mater. 2011;64:880–883.10.1016/j.scriptamat.2011.01.023
  • Hongo T , Edalati K , Arita M , et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion. Acta Mater. 2015;92:46–54.10.1016/j.actamat.2015.03.036
  • Edalati K , Emami H , Staykov A , et al. Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance. Acta Mater. 2015;99:150–156.10.1016/j.actamat.2015.07.060
  • Emami H , Edalati K , Staykov A , et al. Solid-state reactions and hydrogen storage in magnesium mixed with various elements by high-pressure torsion: experiments and first-principles calculations. RCS Adv. 2016;6:11665–11674.
  • Edalati K , Emami H , Ikeda Y , et al. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion. Acta Mater. 2016;108:293–303.10.1016/j.actamat.2016.02.026
  • Edalati K , Uehiro R , Fujiwara K , et al. Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater Sci Eng A. 2017;701:158–166.10.1016/j.msea.2017.06.076
  • Edalati K , Matsuda J , Iwaoka H , et al. High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int J Hydrogen Energy. 2013;38:4622–4627.10.1016/j.ijhydene.2013.01.185
  • Edalati K , Matsuda J , Arita M , et al. Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl Phys Lett. 2013;103:143902.10.1063/1.4823555
  • Edalati K , Matsuda J , Yanagida A , et al. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: Similarities and differences. Int J Hydrogen Energy. 2014;39:15589–15594.10.1016/j.ijhydene.2014.07.124
  • Edalati K , Matsuo M , Emami H , et al. Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scripta Mater. 2016;124:108–111.10.1016/j.scriptamat.2016.07.007
  • Edalati K , Shao H , Emami H , et al. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion. Int J Hydrogen Energy. 2016;41:8917–8924.10.1016/j.ijhydene.2016.03.146
  • Schlapbach L , Züttel A . Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–358.10.1038/35104634
  • Sakintuna B , Lamari-Darkrim F , Hirscher M . Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32:1121–1140.10.1016/j.ijhydene.2006.11.022
  • Dornheim M , Doppiu S , Barkhordarian G , et al. Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Mater. 2007;56:841–846.10.1016/j.scriptamat.2007.01.003
  • Reilly JJ , Wiswall RH . Formation and properties of iron titanium hydride. Inorg Chem. 1974;13:218–222.10.1021/ic50131a042
  • Emami H , Edalati K , Matsuda J , et al. Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 2015;88:190–195.10.1016/j.actamat.2014.12.052
  • Nagai H , Kitagaki K , Shoji K . Microstructure and hydriding characteristics of FeTi alloys containing manganese. J Less-Common Met. 1987;134:275–286.10.1016/0022-5088(87)90567-4
  • Lee SM , Perng TP . Effect of the second phase on the initiation of hydrogenation of TieFe1-xMx (M = Cr, Mn) alloys. Int J Hydrogen Energy. 1994;19:259–263.10.1016/0360-3199(94)90095-7
  • Nagel H , Perkins RS . Crystallographic investigation of ternary titanium vanadium hydrides. Z Metallkd. 1975;66:362–366.
  • Yu XB , Wu Z , Xia BJ , et al. The activation mechanism of Ti-V-based hydrogen storage alloys. J Alloys Compd. 2004;375:221–223.10.1016/j.jallcom.2003.11.027
  • Kim H , Sakaki K , Ogawa H , et al. Origin of degradation in the reversible hydrogen storage capacity of V1-xTix alloys from the atomic pair distribution function analysis. J Phys Chem C. 2013;117:26543–26550.10.1021/jp408766r
  • Straumal BB , Kilmametov AR , Ivanisenko Y , et al. Phase transformations in Ti–Fe alloys induced by high-pressure torsion. Adv Eng Mater. 2015;17:1835–1841.10.1002/adem.201500143
  • Sauvage X , Jessner P , Vurpillot F , et al. Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation. Scripta Mater. 2008;58:1125–1128.10.1016/j.scriptamat.2008.02.010
  • Oh-ishi K , Edalati K , Kim HS , et al. High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 2013;61:3482–3489.10.1016/j.actamat.2013.02.042
  • Edalati K , Toh S , Iwaoka H , et al. Ultrahigh strength and high plasticity in TiAl intermetallics with bimodal grain structure and nanotwins. Scripta Mater. 2012;67:814–817.10.1016/j.scriptamat.2012.07.030
  • Edalati K , Daio T , Lee S , et al. High strength and superconductivity in nanostructured niobium–titanium alloy by high-pressure torsion and annealing: significance of elemental decomposition and supersaturation. Acta Mater. 2014;80:149–158.10.1016/j.actamat.2014.07.065
  • Edalati K , Daio T , Horita Z , et al. Evolution of lattice defects, disordered/ordered phase transformations and mechanical properties in Ni-Al-Ti intermetallics by high-pressure torsion. J Alloys Compd. 2013;563:221–228.10.1016/j.jallcom.2013.02.128
  • Okamoto H . Mg-Zr (Magnesium-Zirconium). J Phase Equilib Diff. 2007;28:305–306.10.1007/s11669-007-9060-7
  • Asano K , Enoki H , Akiba E . Synthesis of HCP, FCC and BCC structure alloys in the Mg–Ti binary system by means of ball milling. J Alloys Compd. 2009;480:558–563.10.1016/j.jallcom.2009.01.086
  • Kuji T , Nakayama S , Hanzawa N , et al. Synthesis of nano-structured b.c.c. Mg–Tm–V (Tm=Ni, Co, Cu) alloys and their hydrogen solubility. J Alloys Compd. 2003;356–357:456–460.10.1016/S0925-8388(03)00229-9
  • Kawasaki M , Figueiredo RB , Huang Y , et al. Interpretation of hardness evolution in metals processed by high-pressure torsion. J Mater Sci. 2014;49:6586–6596.10.1007/s10853-014-8262-8
  • Edalati K , Horita Z . Correlations between hardness and atomic bond parameters of pure metals and semi-metals after processing by high-pressure torsion. Scripta Mater. 2011;64:161–164.10.1016/j.scriptamat.2010.09.034
  • Edalati K , Akama D , Nishio A , et al. Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 2014;69:68–77.10.1016/j.actamat.2014.01.036
  • Razavi-Khosroshahi H , Edalati K , Arita M , et al. Plastic strain and grain size effect on high-pressure phase transformations in nanostructured TiO2 ceramics. Scripta Mater. 2016;124:59–62.10.1016/j.scriptamat.2016.06.022
  • Zaluska A , Zaluski L , Ström–Olsen JO . Nanocrystalline magnesium for hydrogen storage. J Alloys Compd. 1999;288:217–225.10.1016/S0925-8388(99)00073-0
  • Imamura H , Masanari K , Kusuhara M , et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling. J Alloys Compd. 2005;386:211–216.10.1016/j.jallcom.2004.04.145
  • Huot J , Liang G , Boily S , et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd. 1999;293–295:495–500.10.1016/S0925-8388(99)00474-0
  • Trudeau ML , Dignard-Bailey L , Schulz R , et al. The oxidation of nanocrystalline FeTi hydrogen storage compounds. Nanostruct Mater. 1992;1:457–464.10.1016/0965-9773(92)90078-C
  • Aoyagi H , Aoki K , Masumoto T . Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi5. J Alloys Compd. 1995;231:804–809.10.1016/0925-8388(95)01721-6
  • Haraki T , Oishi K , Uchida H , et al. Properties of hydrogen absorption by nano-structured FeTi alloys. Int J Mater Res. 2008;99:507–512.10.3139/146.101669
  • Dornheim M , Eigen N , Barkhordarian G , et al. Tailoring hydrogen storage materials towards application. Adv Eng Mater. 2006;8:377–385.10.1002/(ISSN)1527-2648
  • Iosub V , Matsunaga T , Tange K , et al. Direct synthesis of Mg(AlH4)2 and CaAlH5 crystalline compounds by ball milling and their potential as hydrogen storage materials. Int J Hydrogen Energy. 2009;34:906–912.10.1016/j.ijhydene.2008.11.013
  • Shao H , Felderhoff M , Schüth F . Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int J Hydrogen Energy. 2011;36:10828–10833.10.1016/j.ijhydene.2011.05.180