3,390
Views
24
CrossRef citations to date
0
Altmetric
New topics/Others

A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data

, , , , , & show all
Pages 231-242 | Received 06 Nov 2017, Accepted 07 Feb 2018, Published online: 19 Mar 2018

References

  • Jain A , Hautier G , Moore CJ , et al . A high-throughput infrastructure for density functional theory calculations. Comp Mater Sci. 2011;50:2295–2310.10.1016/j.commatsci.2011.02.023
  • Saal JE , Kirklin S , Aykol M , et al . Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom-Us. 2013;65:1501–1509.10.1007/s11837-013-0755-4
  • Taylor RH , Rose F , Toher C , et al . A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Comp Mater Sci. 2014;93:178–192.10.1016/j.commatsci.2014.05.014
  • Cheng L , Assary RS , Qu XH , et al . Accelerating electrolyte discovery for energy storage with high-throughput screening. J Phys Chem Lett. 2015;6:283–291.10.1021/jz502319n
  • Fujimura K , Seko A , Koyama Y , et al . Superionic conductors based on first-principles calculations and machine learning algorithms. Adv Energy Mater. 2013;3:980–985.10.1002/aenm.v3.8
  • Ghadbeigi L , Harada JK , Lettiere BR , et al . Performance and resource considerations of Li-ion battery electrode materials. Energy Environ Sci. 2015;8:1640–1650.10.1039/C5EE00685F
  • Hautier G . Prediction of new battery materials based on ab initio computations. Aip Conf Proc. 2016;1765:020009(1–10).
  • Jalem R , Kimura M , Nakayama M , et al . Informatics-aided density functional theory study on the Li ion transport of tavorite-type LiMTO4F (M3+–T5+, Ni2+–T6+). J Chem Info Model. 2015;55:1158–1168.10.1021/ci500752n
  • Nishijima M , Ootani T , Kamimura Y , et al . Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat Commun. 2014;5:4553(1–7).
  • Gautier R , Zhang XW , Hu LH , et al . Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat Chem. 2015;7:308–316.10.1038/nchem.2207
  • Landrum GA , Penzotti JE , Putta S . Machine-learning models for combinatorial catalyst discovery. Meas Sci Technol. 2005;16:270–277.10.1088/0957-0233/16/1/035
  • Ma XF , Li Z , Achenie LEK , et al . Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J Phys Chem Lett. 2015;6:3528–3533.10.1021/acs.jpclett.5b01660
  • García-Cañadas J , Adkins NJE , McCain S , et al . Accelerated discovery of thermoelectric materials: combinatorial facility and high-throughput measurement of thermoelectric power factor. ACS Comb Sci. 2016;18:314–319.10.1021/acscombsci.5b00178
  • Seko A , Togo A , Hayashi H , et al . Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901(1–5).
  • Dey P , Bible J , Datta S , et al . Informatics-aided bandgap engineering for solar materials. Comp Mater Sci. 2014;83:185–195.10.1016/j.commatsci.2013.10.016
  • Isayev O , Fourches D , Muratov EN , et al . Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater. 2015;27:735–743.10.1021/cm503507 h
  • Sanvito S , Oses C , Xue J , et al . Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv. 2017;3:e1602241(1–9).10.1126/sciadv.1602241
  • Ghiringhelli LM , Vybiral J , Levchenko SV , et al . Big Data of Materials Science: Critical Role of the Descriptor. Phys Rev Lett. 2015;114:105503(1–5).10.1103/PhysRevLett.114.105503
  • Jalem R , Aoyama T , Nakayama M , et al . Multivariate method-assisted Ab initio study of olivine-type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) compositions as potential solid electrolytes. Chem Mater. 2012;24:1357–1364.10.1021/cm3000427
  • Jalem R , Nakayama M , Kasuga T . An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks. J Mater Chem A. 2014;2:720–734.10.1039/C3TA13235H
  • de Jong M , Chen W , Notestine R , et al . A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep. 2016;6:34256(1–11).10.1038/srep34256
  • Meredig B , Agrawal A , Kirklin S , et al . Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B. 2014;89:094104(1–7).10.1103/PhysRevB.89.094104
  • Janežič D , Nikolić S , Miličević A , et al . Graph theoretical matrices in chemistry. In: Gutman I , editor. Mathematical chemistry monographs 3. Serbia: University of Kragujevac; 2007. p. 10–166. ISBN 978-86-81829-72-1.
  • Hansen K , Montavon G , Biegler F , et al . Assessment and validation of machine learning methods for predicting molecular atomization energies. J Chem Theory Comput. 2013;9:3404–3419.10.1021/ct400195d
  • Rupp M , Tkatchenko A , Muller KR , et al . Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett. 2012;108:058301(1–5).
  • Schutt KT , Glawe H , Brockherde F , et al . How to represent crystal structures for machine learning: Towards fast prediction of electronic properties. Phys Rev B. 2014;89:205118(1–5).
  • Seko A , Hayashi H , Nakayama K , et al . Representation of compounds for machine-learning prediction of physical properties. Phys Rev B. 2017;95:144110(1–11).
  • Bartók AP , De S , Poelking C , et al . Machine learning unifies the modeling of materials and molecules. Sci Adv. 2017;3:e1701816(1–8).10.1126/sciadv.1701816
  • Bartók AP , Payne MC , Kondor R , et al . Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett. 2010;104:136403(1–5).10.1103/PhysRevLett.104.136403
  • Voronoi G . Recherches sur les parallélloèdres primitifs [Research on primitive parallelhedrons]. J Reine Angew Math. 1908;134:198–287.
  • Voronoi G . Recherches sur les paralléloèdres primitifs [Research on primitive parallelhedrons]. J Reine Angew Math. 1909;136:67–182.
  • Yang LS , Dacek S , Ceder G . Proposed definition of crystal substructure and substructural similarity. Phys Rev B. 2014;90:054102(1–9).
  • Isayev O , Oses C , Toher C , et al . Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun. 2017;8:15679(1–12).
  • Kresse G , Furthmuller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.10.1103/PhysRevB.54.11169
  • Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758–1775.10.1103/PhysRevB.59.1758
  • Csonka GI , Perdew JP , Ruzsinszky A , et al . Assessing the performance of recent density functionals for bulk solids. Phys Rev B. 2009;79:155107(1–32).
  • ICSD, Inorganic Crystal Structure Database . 2006. Available from: http://icsd.fizkarlsruhe.de/icsd/.
  • Payne MC , Teter MP , Allan DC , et al . Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64:1045–1097.10.1103/RevModPhys.64.1045
  • Liechtenstein AI , Anisimov VI , Zaanen J . Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B. 1995;52:R5467–R5470.10.1103/PhysRevB.52.R5467
  • Dudarev SL , Botton GA , Savrasov SY , et al . Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B. 1998;57:1505–1509.10.1103/PhysRevB.57.1505
  • Hedin L . New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev. 1965;139:A796–A823.10.1103/PhysRev.139.A796
  • Aulbur WG , Jonsson L , Wilkins JW . Quasiparticle calculations in solids. Solid State Phys. 2000;54:1–218.
  • Pauling L . The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc. 1932;54:3570–3582.10.1021/ja01348a011
  • Shannon RD . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–767.10.1107/S0567739476001551
  • Kanal L . On dimensionality and sample size in statistical pattern classification. Pattern Recognit. 1971;33:225–234.10.1016/0031-3203(71)90013-6
  • O’Keefee M . A proposed rigorous definition of coordination number. Acta Cryst. 1979;A35:772–775.10.1107/S0567739479001765
  • Louer M , Le Roux C , Dubac J . Ab initio structure determination from X-ray powder diffraction data of tetraaquabismuth(III) triflate obtained from the nonahydrate. Chem Mater. 1997;9:3012–3016.10.1021/cm970361 m
  • Rycroft CH . VORO plus plus: a three-dimensional Voronoi cell library in C plus. Chaos. 2009;19:041111(1–1).
  • Faber FA , Hutchison L , Huang B , et al . Prediction errors of molecular machine learning models lower than hybrid DFT error. J Chem Theory Comput. 2017;13:5255–5264.10.1021/acs.jctc.7b00577
  • Friedman JH . Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–1232.10.1214/aos/1013203451
  • Smola AJ , Scholkopf B . A tutorial on support vector regression. Stat Comput. 2004;14:199–222.10.1023/B:STCO.0000035301.49549.88
  • Pedregosa F , Varoquaux G , Gramfort A , et al . Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–2830.
  • Vapnik V , Levin E , Le Cun Y . Measuring the VC-dimension of a learning machine. Neural Comput. 1994;6:851–876.10.1162/neco.1994.6.5.851
  • Morales-García Á , Valero R , Illas F . An emprical, yet practical way to predict the band gap in solids by using density functional band structure calculations. J Phys Chem C. 2017;121:18862–18866.10.1021/acs.jpcc.7b07421
  • Brostow W , Chybicki M , Laskowski R , et al . Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys Rev B. 1998;57:13448–13458.10.1103/PhysRevB.57.13448
  • Momma K , Izumi F . VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst. 2008;41:653–658.10.1107/S0021889808012016
  • Persistence of Vision Raytracer . Version 3.6. [Computer software]. Persistence of Vision Pty; 2004. Available from: http://www.povray.org/download/.
  • Hunter JD . Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9:90–95.10.1109/MCSE.2007.55