8,733
Views
83
CrossRef citations to date
0
Altmetric
Focus on Organic and Hybrid Photovoltaics

Opto-electronic characterization of third-generation solar cells

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 291-316 | Received 18 Dec 2017, Accepted 14 Feb 2018, Published online: 19 Mar 2018

References

  • Schroder DK . Carrier lifetimes in silicon. IEEE Trans Electron Devices. 1997;44:160–170.10.1109/16.554806
  • Cuevas A , Kerr MJ , Samundsett C , et al . Millisecond minority carrier lifetimes in n-type multicrystalline silicon. Appl Phys Lett. 2002;81:4952–4954.10.1063/1.1529089
  • Knobloch J , Glunz SW , Biro D , et al . Solar cells with efficiencies above 21% processed from Czochralski grown silicon. Photovolt Spec Conf 1996 Conf Rec Twenty Fifth IEEE. IEEE. 1996;405–408.
  • Würfel P , Würfel U . Physics of solar cells: from basic principles to advanced concepts. 2nd, updated and expanded edition. Weinheim: Wiley-VCH; 2009.
  • Hoppe H , Sariciftci NS . Morphology of polymer/fullerene bulk heterojunction solar cells. J Mater Chem. 2006;16:45–61.10.1039/B510618B
  • Lee HKH , Li Z , Constantinou I , et al . Batch-to-batch variation of polymeric photovoltaic materials: its origin and impacts on charge carrier transport and device performances. Adv Energy Mater. 2014;4:1400768.10.1002/aenm.201400768
  • Glatthaar M , Riede M , Keegan N , et al . Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Sol Energy Mater Sol Cells. 2007;91:390–393.10.1016/j.solmat.2006.10.020
  • Brütting W , Berleb S , Mückl AG . Device physics of organic light-emitting diodes based on molecular materials. Org Electron. 2001;2:1–36.10.1016/S1566-1199(01)00009-X
  • Neukom MT , Züfle S , Ruhstaller B . Reliable extraction of organic solar cell parameters by combining steady-state and transient techniques. Org Electron. 2012;13:2910–2916.10.1016/j.orgel.2012.09.008
  • Züfle S , Neukom MT , Altazin S , et al . An effective area approach to model lateral degradation in organic solar cells. Adv Energy Mater. 2015;1614–1640.
  • Wang M , Xie F , Du J , et al . Degradation mechanism of organic solar cells with aluminum cathode. Sol Energy Mater Sol Cells. 2011;95:3303–3310.10.1016/j.solmat.2011.07.020
  • Tress W , Leo K , Riede M . Influence of hole-transport layers and donor materials on open-circuit voltage and shape of I-V curves of organic solar cells. Adv Funct Mater. 2011;21:2140–2149.10.1002/adfm.v21.11
  • Hamilton R , Shuttle CG , O’Regan B , et al . Recombination in annealed and nonannealed polythiophene/fullerene solar cells: transient photovoltage studies versus numerical modeling. J Phys Chem Lett. 2010;1:1432–1436.10.1021/jz1001506
  • Cowan SR , Leong WL , Banerji N , et al . Identifying a threshold impurity level for organic solar cells: enhanced first-order recombination via well-defined PC84BM traps in organic bulk heterojunction solar cells. Adv Funct Mater. 2011;21:3083–3092.10.1002/adfm.201100514
  • Goetzberger A , Knobloch J , Voß B . The principles of photovoltaics [ Internet]. Chichester: Wiley; 2014 [cited 2017 Nov 27]. Available from: http://doi.wiley.com/10.1002/9781119033769.ch3.10.1002/9781119033769
  • Michels JJ , Oostra AJ , Blom PWM . Short-circuit prevention strategies in organic light-emitting diodes and solar cells. Smart Mater Struct. 2016;25:084015.10.1088/0964-1726/25/8/084015
  • Dongaonkar S , Servaites JD , Ford GM , et al . Universality of non-Ohmic shunt leakage in thin-film solar cells. J Appl Phys. 2010;108:124509.10.1063/1.3518509
  • Yeo J-S , Yun J-M , Kim S-S , et al . Variations of cell performance in ITO-free organic solar cells with increasing cell areas. Semicond Sci Technol. 2011;26:034010.10.1088/0268-1242/26/3/034010
  • Seemann A , Sauermann T , Lungenschmied C , et al . Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol Energy. 2011;85:1238–1249.10.1016/j.solener.2010.09.007
  • Yu G , Gao J , Hummelen JC , et al . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science. 1995;270:1789–1791.10.1126/science.270.5243.1789
  • Semiconducting thin film optics simulator (SETFOS) by Fluxim AG, Switzerland [ Internet]. Available from: http://www.fluxim.com.
  • Häusermann R , Knapp E , Moos M , et al . Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis. J Appl Phys. 2009;106:104507.10.1063/1.3259367
  • Neukom MT , Züfle S , Knapp E , et al . Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Sol Energy Mater Sol Cells. 2017;169:159–166.10.1016/j.solmat.2017.05.021
  • Neukom M . Charge carrier dynamics of methylammonium lead-iodide perovskite. Solar Cells. 2016. https://arxiv.org/abs/1611.06425
  • Kirsch C , Altazin S , Hiestand R , et al . Electrothermal simulation of large-area semiconductor devices. Int J Multiphysics. 2017;11. DOI:10.21152/1750-9548.11.2.127.
  • Bartesaghi D , Pérez I del C , Kniepert J , et al . Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat Commun. 2015;6:7083.10.1038/ncomms8083
  • Wagner J , Gruber M , Wilke A , et al . Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. J Appl Phys. 2012;111:054509.10.1063/1.3692050
  • Dibb GFA , Muth M-A , Kirchartz T , et al . Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. Sci Rep. 2013;3:3335.10.1038/srep03335
  • De Castro F , Laudani A , Riganti Fulginei F , et al . An in-depth analysis of the modelling of organic solar cells using multiple-diode circuits. Sol Energy. 2016;135:590–597.10.1016/j.solener.2016.06.033
  • Nie W , Tsai H , Asadpour R , et al . High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347:522–525.10.1126/science.aaa0472
  • Sherkar TS , Momblona C , Gil-Escrig L , et al . Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2017;2:1214–1222.10.1021/acsenergylett.7b00236
  • Sun X , Asadpour R , Nie W , et al . A physics-based analytical model for perovskite solar cells. IEEE J Photovolt. 2015;5:1389–1394.10.1109/JPHOTOV.2015.2451000
  • Spies A , Reinhardt J , List M , et al . Impact of charge carrier mobility and electrode selectivity on the performance of organic solar cells. In: Leo K , editor. Elem Process Org Photovolt [ Internet]. Cham: Springer International Publishing; 2017 [cited 2017 Mar 7]. p. 401–418. Available from: http://link.springer.com/10.1007/978-3-319-28338-8_17.10.1007/978-3-319-28338-8
  • Mott NF , Gurney RW . Electronic processes in ionic crystals. Oxford: Clarendon Press; 1940.
  • Wetzelaer GAH , Kuik M , Lenes M , et al . Origin of the dark-current ideality factor in polymer: fullerene bulk heterojunction solar cells. Appl Phys Lett. 2011;99:153506.10.1063/1.3651752
  • Kirchartz T , Deledalle F , Tuladhar PS , et al . On the differences between dark and light ideality factor in polymer: fullerene solar cells. J Phys Chem Lett. 2013;4:2371–2376.10.1021/jz4012146
  • Kirchartz T , Nelson J . Meaning of reaction orders in polymer:fullerene solar cells. Phys Rev B. 2012;86:165201.10.1103/PhysRevB.86.165201
  • Mihailetchi VD , Koster LJA , Hummelen JC , et al . Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett. 2004;93:216601.10.1103/PhysRevLett.93.216601
  • Koster LJA , Mihailetchi VD , Ramaker R , et al . Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl Phys Lett. 2005;86:123509.10.1063/1.1889240
  • Juška G , Arlauskas K , Viliūnas M , et al . Extraction current transients: new method of study of charge transport in microcrystalline silicon. Phys Rev Lett. 2000;84:4946.
  • Mozer AJ , Sariciftci NS , Lutsen L , et al . Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique. Appl Phys Lett. 2005;86:112104.10.1063/1.1882753
  • Bange S , Schubert M , Neher D . Charge mobility determination by current extraction under linear increasing voltages: case of nonequilibrium charges and field-dependent mobilities. Phys Rev B. 2010;81:035209.10.1103/PhysRevB.81.035209
  • Lorrmann J , Badada BH , Inganäs O , et al . Charge carrier extraction by linearly increasing voltage: analytic framework and ambipolar transients. J Appl Phys. 2010;108:113705.10.1063/1.3516392
  • Baumann A , Lorrmann J , Rauh D , et al . A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions. Adv Mater. 2012;24:4381–4386.10.1002/adma.201200874
  • Juška G , Nekrašas N , Genevičius K . Investigation of charge carriers transport from extraction current transients of injected charge carriers. J Non-Cryst Solids. 2012;358:748–750.
  • Armin A , Velusamy M , Burn PL , et al . Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells. Appl Phys Lett. 2012;101:083306.10.1063/1.4747330
  • Gao Y , Pivrikas A , Xu B , et al . Measuring electron and hole mobilities in organic systems: charge selective CELIV. Synth Met. 2015;203:187–191.10.1016/j.synthmet.2015.02.036
  • Züfle S , Altazin S , Hofmann A , et al . The use of charge extraction by linearly increasing voltage in polar organic light-emitting diodes. J Appl Phys. 2017;121:175501.10.1063/1.4982903
  • Züfle S , Altazin S , Hofmann A , et al . Determination of charge transport activation energy and injection barrier in organic semiconductor devices. J Appl Phys. 2017;122:115502.10.1063/1.4992041
  • Frost JM , Walsh A . What is moving in hybrid halide perovskite solar cells? Acc Chem Res. 2016;49:528–535.10.1021/acs.accounts.5b00431
  • Tress W , Marinova N , Moehl T , et al . Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Env Sci. 2015;8:995–1004.10.1039/C4EE03664F
  • Lee H , Gaiaschi S , Chapon P , et al . Direct experimental evidence of halide ionic migration under bias in CH3NH3PbI3−x Cl x -based perovskite solar cells using GD-OES analysis. ACS Energy Lett. 2017;2:943–949.10.1021/acsenergylett.7b00150
  • Eames C , Frost JM , Barnes PRF , et al . Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 2015;6:7497.10.1038/ncomms8497
  • Sandberg OJ , Nyman M , Österbacka R . Direct determination of doping concentration and built-in voltage from extraction current transients. Org Electron. 2014;15:3413–3420.10.1016/j.orgel.2014.09.027
  • Neukom MT , Reinke NA , Ruhstaller B . Charge extraction with linearly increasing voltage: a numerical model for parameter extraction. Sol Energy. 2011;85:1250–1256.10.1016/j.solener.2011.02.028
  • Dennler G , Mozer AJ , Juška G , et al . Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells. Org Electron. 2006;7:229–234.10.1016/j.orgel.2006.02.004
  • Clarke TM , Lungenschmied C , Peet J , et al . A comparison of five experimental techniques to measure charge carrier lifetime in polymer/fullerene solar cells. Adv Energy Mater. 2015;5:1401345.10.1002/aenm.201401345
  • Elliott LCC , Basham JI , Pernstich KP , et al . Probing charge recombination dynamics in organic photovoltaic devices under open-circuit conditions. Adv Energy Mater. 2014;4:1400356.10.1002/aenm.201400356
  • Baumann A , Tvingstedt K , Heiber MC , et al . Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Mater. 2014;2:081501.10.1063/1.4885255
  • Deledalle F , Shakya Tuladhar P , Nelson J , et al . Understanding the apparent charge density dependence of mobility and lifetime in organic bulk heterojunction solar cells. J Phys Chem C. 2014;118:8837–8842.10.1021/jp502948y
  • Li Z , Gao F , Greenham NC , et al . Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv Funct Mater. 2011;21:1419–1431.10.1002/adfm.v21.8
  • Credgington D , Kim Y , Labram J , et al . Analysis of recombination losses in a Pentacene/C60 organic bilayer solar cell. J Phys Chem Lett. 2011;2:2759–2763.10.1021/jz201338d
  • Shuttle CG , O’Regan B , Ballantyne AM , et al . Experimental determination of the rate law for charge carrier decay in a polythiophene: fullerene solar cell. Appl Phys Lett. 2008;92:093311.10.1063/1.2891871
  • Kiermasch D , Baumann A , Fischer M , et al . Revisiting lifetimes from transient electrical characterization of thin film solar cells; a capacitive concern evaluated for silicon, organic and perovskite devices. Energy Environ Sci. 2018. DOI:10.1039/C7EE03155F.
  • O’Regan BC , Durrant JR , Sommeling PM , et al . Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C. 2007;111:14001–14010.10.1021/jp073056p
  • Lang DV . Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J Appl Phys. 1974;45:3023–3032.10.1063/1.1663719
  • Wessels BW . Determination of deep levels in Cu-doped GaP using transient-current spectroscopy. J Appl Phys. 1976;47:1131–1133.10.1063/1.322695
  • Borsuk JA , Swanson RM . Current transient spectroscopy: a high-sensitivity DLTS system. IEEE Trans Electron Devices. 1980;27:2217–2225.10.1109/T-ED.1980.20255
  • Arora BM , Chakravarty S , Subramanian S , et al . Deep-level transient charge spectroscopy of Sn donors in Al x Ga1−x As. J Appl Phys. 1993;73:1802–1806.10.1063/1.353189
  • Hanak TR , Ahrenkiel RK , Dunlavy DJ , et al . A new method to analyze multiexponential transients for deep-level transient spectroscopy. J Appl Phys. 1990;67:4126–4132.10.1063/1.344973
  • Stallinga P , Gomes HL , Rost H , et al . Electronic levels in MEH-PPV. Synth Met. 2000;111:535–537.10.1016/S0379-6779(99)00413-0
  • Bozyigit D , Jakob M , Yarema O , et al . Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids. ACS Appl Mater Interfaces. 2013;5:2915–2919.10.1021/am400326t
  • Neugebauer S , Rauh J , Deibel C , et al . Investigation of electronic trap states in organic photovoltaic materials by current-based deep level transient spectroscopy. Appl Phys Lett. 2012;100:263304.10.1063/1.4731637
  • Yang WS , Park B-W , Jung EH , et al . Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 2017;356:1376–1379.10.1126/science.aan2301
  • Kirov KI , Radev KB . A simple charge-based DLTS technique. Phys Status Solidi A. 1981;63:711–716.10.1002/(ISSN)1521-396X
  • Street RA . Localized state distribution and its effect on recombination in organic solar cells. Phys Rev B. 2011;84:075208.10.1103/PhysRevB.84.075208
  • McNeill CR , Hwang I , Greenham NC . Photocurrent transients in all-polymer solar cells: trapping and detrapping effects. J Appl Phys. 2009;106:024507.10.1063/1.3177337
  • Hwang I , McNeill CR , Greenham NC . Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. J Appl Phys. 2009;106:094506.10.1063/1.3247547
  • Duffy NW , Peter LM , Rajapakse RMG , et al . A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells. Electrochem Commun. 2000;2:658–662.10.1016/S1388-2481(00)00097-7
  • Shuttle CG , Maurano A , Hamilton R , et al . Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: analysis of the origin of the device dark current. Appl Phys Lett. 2008;93:183501.10.1063/1.3006316
  • O’Regan BC , Barnes PRF , Li X , et al . Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J Am Chem Soc. 2015;137:5087–5099.10.1021/jacs.5b00761
  • Lange I , Kniepert J , Pingel P , et al . Correlation between the open circuit voltage and the energetics of organic bulk heterojunction solar cells. J Phys Chem Lett. 2013;4:3865–3871.10.1021/jz401971e
  • Wright B , Nakajima Y , Clarke TM , et al . Quantifying recombination losses during charge extraction in bulk heterojunction solar cells using a modified charge extraction technique. Adv Energy Mater. 2017;7:1602026.10.1002/aenm.v7.11
  • Basham JI , Jackson TN , Gundlach DJ . Predicting the J–V curve in organic photovoltaics using impedance spectroscopy. Adv Energy Mater. 2014;4:1400499.10.1002/aenm.201400499
  • Garcia-Belmonte G , Munar A , Barea EM , et al . Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org Electron. 2008;9:847–851.10.1016/j.orgel.2008.06.007
  • Al-Mudhaffer MF , Griffith MJ , Feron K , et al . The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices. Sol Energy Mater Sol Cells. 2018;175:77–88.10.1016/j.solmat.2017.09.007
  • Mohammadian N , Moshaii A , Alizadeh A , et al . Influence of perovskite morphology on slow and fast charge transport and hysteresis in the perovskite solar cells. J Phys Chem Lett. 2016;7:4614–4621.10.1021/acs.jpclett.6b01909
  • Dualeh A , Moehl T , Tétreault N , et al . Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano. 2014;8:362–373.10.1021/nn404323g
  • Knapp E , Ruhstaller B . Numerical analysis of steady-state and transient charge transport in organic semiconductor devices. Opt Quantum Electron. 2011;42:667–677.10.1007/s11082-011-9443-1
  • Knapp E , Ruhstaller B . The role of shallow traps in dynamic characterization of organic semiconductor devices. J Appl Phys. 2012;112:024519.10.1063/1.4739303
  • Bozyigit D , Volk S , Yarema O , et al . Quantification of deep traps in nanocrystal solids, their electronic properties, and their influence on device behavior. Nano Lett. 2013;13:5284–5288.10.1021/nl402803 h
  • Knapp E , Ruhstaller B . Analysis of negative capacitance and self-heating in organic semiconductor devices. J Appl Phys. 2015;117:135501.10.1063/1.4916981
  • Tripathi DC , Mohapatra YN . Diffusive capacitance in space charge limited organic diodes: analysis of peak in capacitance-voltage characteristics. Appl Phys Lett. 2013;102:253303.10.1063/1.4812487
  • van Mensfoort SLM , Coehoorn R . Determination of injection barriers in organic semiconductor devices from capacitance measurements. Phys Rev Lett. 2008;100:086802.10.1103/PhysRevLett.100.086802
  • Germs WC , van der Holst JJM , van Mensfoort SLM , et al . Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states. Phys Rev B. 2011;84:165210.10.1103/PhysRevB.84.165210
  • Jenatsch S , Hany R , Véron AC , et al . Influence of molybdenum oxide interface solvent sensitivity on charge trapping in bilayer cyanine solar cells. J Phys Chem C. 2014;118:17036–17045.10.1021/jp5005314
  • Schmidt TD , Jäger L , Noguchi Y , et al . Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements. J Appl Phys. 2015;117:215502.10.1063/1.4921829
  • Nowy S , Ren W , Elschner A , et al . Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. J Appl Phys. 2010;107:054501.10.1063/1.3294642
  • Altazin S , Züfle S , Knapp E , et al . Simulation of OLEDs with a polar electron transport layer. Org Electron. 2016;39:244–249.10.1016/j.orgel.2016.10.014
  • Kirchartz T , Gong W , Hawks SA , et al . Sensitivity of the Mott–Schottky analysis in organic solar cells. J Phys Chem C. 2012;116:7672–7680.10.1021/jp300397f
  • Mingebach M , Deibel C , Dyakonov V . Built-in potential and validity of the Mott–Schottky analysis in organic bulk heterojunction solar cells. Phys Rev B. 2011;84:153201.10.1103/PhysRevB.84.153201
  • Li J , Peter LM . Surface recombination at semiconductor electrodes: part III. Steady-state and intensity modulated photocurrent response. J Electroanal Chem Interfacial Electrochem. 1985;193:27–47.
  • Ponomarev EA , Peter LM . A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J Electroanal Chem. 1995;396:219–226.10.1016/0022-0728(95)04115-5
  • Krüger J , Plass R , Grätzel M , et al . Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J Phys Chem B. 2003;107:7536–7539.10.1021/jp0348777
  • Frank A J , Kopidakis N , van de Lagemaat J . Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev. 2004;248:1165–1179.10.1016/j.ccr.2004.03.015
  • Kim G-O , Ryu K-S . Dynamic response of charge transfer and recombination at various electrodes in dye-sensitized solar cells investigated using intensity modulated photocurrent and photovoltage spectroscopy. Bull Korean Chem Soc. 2012;33:469–472.10.5012/bkcs.2012.33.2.469
  • Set YT , Heinemann MD , Birgersson E , et al . On the origin of the quadrant I semicircle in intensity-modulated photocurrent spectra of P3HT:PCBM bulk heterojunction solar cells: evidence of degradation-related trap-assisted recombination. J Phys Chem C. 2013;117:7993–8000.10.1021/jp310841v
  • Gao Y , Wise AJ , Thomas AK , et al . Spectroscopic and intensity modulated photocurrent imaging of polymer/fullerene solar cells. ACS Appl Mater Interfaces. 2016;8:285–293.10.1021/acsami.5b08724
  • Correa-Baena J-P , Anaya M , Lozano G , et al . Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv Mater. 2016;28:5031–5037.10.1002/adma.201600624
  • Byers JC , Ballantyne S , Rodionov K , et al . Mechanism of recombination losses in bulk heterojunction P3HT:PCBM solar cells studied using intensity modulated photocurrent spectroscopy. ACS Appl Mater Interfaces. 2011;3:392–401.10.1021/am100998t
  • Zhao Y , Nardes AM , Zhu K . Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss. 2014;176:301–312.10.1039/C4FD00128A
  • Kokil A , Yang K , Kumar J . Techniques for characterization of charge carrier mobility in organic semiconductors. J Polym Sci Part B Polym Phys. 2012;50:1130–1144.10.1002/polb.23103
  • Chan KKH , Tsang SW , Lee HKH , et al . Charge injection and transport studies of poly(2,7-carbazole) copolymer PCDTBT and their relationship to solar cell performance. Org Electron. 2012;13:850–855.10.1016/j.orgel.2012.01.030
  • Pivrikas A , Sariciftci NS , Juška G , et al . A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt Res Appl. 2007;15:677–696.10.1002/(ISSN)1099-159X
  • Hertel D , Soh EV , Bässler H , et al . Electric field dependent generation of geminate electron–hole pairs in a ladder-type π-conjugated polymer probed by fluorescence quenching and delayed field collection of charge carriers. Chem Phys Lett. 2002;361:99–105.10.1016/S0009-2614(02)00898-9
  • Kniepert J , Schubert M , Blakesley JC , et al . Photogeneration and recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments. J Phys Chem Lett. 2011;2:700–705.10.1021/jz200155b
  • Baumann A , Väth S , Rieder P , et al . Identification of trap states in perovskite solar cells. J Phys Chem Lett. 2015;6:2350–2354.10.1021/acs.jpclett.5b00953
  • Han X , Bag M , Gehan TS , et al . Analysis of hole transport in thin films and nanoparticle assemblies of poly(3-hexylthiophene). Chem Phys Lett. 2014;610–611:273–277.10.1016/j.cplett.2014.07.022
  • Set YT , Zhang T , Birgersson E , et al . What parameters can be reliably deduced from the current–voltage characteristics of an organic bulk-heterojunction solar cell? J Appl Phys. 2015;117:084503.10.1063/1.4913674
  • Hansson R . Materials and device engineering for efficient and stable polymer solar cells. Karlstad: Karlstads universitet; 2017.
  • Platform for all-in-one characterization (PAIOS) by Fluxim AG, Switzerland [ Internet]. Available from: http://www.fluxim.com.
  • Levenberg K . A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2:164–168.10.1090/qam/1944-02-02
  • Marquardt DW . An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–441.10.1137/0111030
  • Namkoong G , Kong J , Samson M , et al . Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Org Electron. 2013;14:74–79.10.1016/j.orgel.2012.10.025
  • Clarke TM , Peet J , Nattestad A , et al . Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Org Electron. 2012;13:2639–2646.10.1016/j.orgel.2012.07.037
  • Li Z , McNeill CR . Transient photocurrent measurements of PCDTBT:PC70BM and PCPDTBT:PC70BM solar cells: evidence for charge trapping in efficient polymer/fullerene blends. J Appl Phys. 2011;109:074513.10.1063/1.3573394
  • Hunter JD . Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–95.10.1109/MCSE.2007.55