3,269
Views
42
CrossRef citations to date
0
Altmetric
Energy Materials

Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells

ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon & show all
Pages 396-410 | Received 25 Oct 2017, Accepted 26 Mar 2018, Published online: 15 May 2018

References

  • Jackson P , Wuerz R , Hariskos D , et al . Effects of heavy alkali elementsin Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi-R. 2016;10:583– 586 .10.1002/pssr.v10.8
  • Chirilă A , Reinhard P , Pianezzi F , et al . Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells. Nat Mater. 2013;12:1107– 1111 .10.1038/nmat3789
  • Hara T , Maekawa T , Minoura S , et al . Quantitative assessment of optical gain and loss in submicron-textured CuIn1–xGaxSe2 Solar Cells Fabricated by Three-Stage Coevaporation. Phys Rev Appl. 2014;2:034012.10.1103/PhysRevApplied.2.034012
  • Palik ED . Handbook of optical constants of solids II. Cambridge (MA): Academic Press; 1991.
  • Brehme S , Fenske F , Fuhs W , et al . Free-carrier plasma resonance effects and electron transport in reactively sputtered degenerate ZnO:Al films. Thin Solid Films. 1999;342:167– 173 .10.1016/S0040-6090(98)01490-4
  • Coutts TJ , Young DL , Gessert TA . Modeling, characterization, and properties of transparent conducting oxides. In: Ginley DS , editor. Handbook of transparent conductors. Boston (MA): Springer, US; 2011. p. 51–110.10.1007/978-1-4419-1638-9
  • Jin ZC , Hamberg I , Granqvist CG . Optical properties of sputter‐deposited ZnO:Al thin films. J Appl Phys. 1988;64:5117– 5131 .10.1063/1.342419
  • Yoshikawa H , Adachi S . Optical constants of ZnO. Jpn J Appl Phys. 1997;1(36):6237–43.10.1143/JJAP.36.6237
  • Palik ED . Handbook of optical constants of solids. Cambridge (MA): Academic Press; 1991.
  • Evans BL , Hazelwood RA . Optical and structural properties of MoSe2 . Phys Status Solidi A. 1971;4:181– 192 .10.1002/(ISSN)1521-396X
  • Li YL , Chernikov A , Zhang X , et al . Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 . Phys Rev B. 2014;90:205422.
  • Nishiwaki S , Kohara N , Negami T , et al . MoSe2 layer formation at Cu(In, Ga)Se2/Mo interfaces in high efficiency Cu(In1–xGax)Se2 solar cells. Jpn J Appl Phys. 1998;2(37):L71–L3.10.1143/JJAP.37.L71
  • Witte W , Abou-Ras D , Albe K , et al . Gallium gradients in Cu(In, Ga)Se2 thin-film solar cells. Prog Photovoltaics. 2015;23:717– 733 .10.1002/pip.v23.6
  • Avancini E , Carron R , Bissig B , et al . Impact of compositional grading and overall Cu deficiency on the near-infrared response in Cu(In, Ga)Se2 solar cells. Prog Photovoltaics. 2017;25:233– 241 .10.1002/pip.v25.3
  • Siebentritt S , Gütay L , Regesch D , et al . Why do we make Cu(In, Ga)Se2 solar cells non-stoichiometric? Sol Energ Mat Sol C. 2013;119:18–25.10.1016/j.solmat.2013.04.014
  • Jitsukawa H , Matsushita H , Takizawa T . Phase diagrams of the (Cu2Se, CuSe)–CuGaSe2 system and the crystal growth of CuGaSe2 by the solution method. J Cryst Growth. 1998;186:587– 593 .10.1016/S0022-0248(97)00833-6
  • Stanbery BJ . Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State. 2002;27:73–117.10.1080/20014091104215
  • Beilharz C . Charakterisierung von aus der Schmelze gezüchteten Kristallen in den Systemen Kupfer-Indium-Selen und Kupfer-Indium-Gallium-Selen für photovoltaische Anwendungen [Characterization of melt-grown crystals in the Copper-Indium-Selenium and Copper-Indium-Gallium-Selenium systems for photovoltaic applications]. Herzogenrath: Shaker Verlag; 1999.
  • Mikkelsen JC . Ternary phase relations of the chalcopyrite compound CuGaSe2 . J Electron Mater. 1981;10:541– 558 .10.1007/BF02654590
  • Paulson PD , Birkmire RW , Shafarman WN . Optical characterization of CuIn1–xGaxSe2 alloy thin films by spectroscopic ellipsometry. J Appl Phys. 2003;94:879– 888 .10.1063/1.1581345
  • Alonso MI , Wakita K , Pascual J , et al . Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 . Phys Rev B. 2001;63:075203.
  • Alonso MI , Garriga M , Rincon CAD , et al . Optical functions of chalcopyrite CuGaxIn1–xSe2 alloys. Appl Phys A Mater. 2002;74:659– 664 .10.1007/s003390100931
  • Minoura S , Kodera K , Maekawa T , et al . Dielectric function of Cu(In, Ga)Se2-based polycrystalline materials. J Appl Phys. 2013;113:063505.
  • Minoura S , Maekawa T , Kodera K , et al . Optical constants of Cu(In, Ga)Se2 for arbitrary Cu and Ga compositions. J Appl Phys. 2015;117.195703
  • Aryal P , Pradhan P , Attygalle D , et al . Real-time, in-line, and mapping spectroscopic ellipsometry for applications in Cu(In1–xGax)Se2 Metrology. IEEE J Photovolt. 2014;4:333– 339 .10.1109/JPHOTOV.2013.2282745
  • Aryal P , Ibdah AR , Pradhan P , et al . Parameterized complex dielectric functions of CuIn1–xGaxSe2: applications in optical characterization of compositional non-uniformities and depth profiles in materials and solar cells. Prog Photovoltaics. 2016;24:1200– 1213 .10.1002/pip.2774
  • Goris L , Haenen K , Nesládek M , et al . Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy. J Mater Sci. 2005;40:1413– 1418 .10.1007/s10853-005-0576-0
  • Remes Z , Vasudevan R , Jarolimek K , et al . The optical spectra of a–Si: H and a–SiC: H thin films measured by the absolute photothermal deflection spectroscopy (PDS). Solid State Phenomen. 2014;213:19–28.10.4028/www.scientific.net/SSP.213
  • Kuzmenko A . Guide to RefFIT: software to fit optical spectra. [cited 2018]. Available from: https://sites.google.com/site/reffitprogram/home
  • Herzinger CM , Johs B , McGahan WA , et al . Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation. J Appl Phys. 1998;83:3323– 3336 .10.1063/1.367101
  • Bruggeman DAG . Calculation of various physics constants in heterogenous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann Phys-Berlin. 1935; 416 :636– 664 .10.1002/(ISSN)1521-3889
  • Lehmann D , Seidel F , Zahn DRT . Thin films with high surface roughness: thickness and dielectric function analysis using spectroscopic ellipsometry. SpringerPlus. 2014;3:82.10.1186/2193-1801-3-82
  • Rostan PJ , Mattheis J , Bilger G , et al . Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In, Ga)Se2 solar cells and tandem structures. Thin Solid Films. 2005;480:67–70.10.1016/j.tsf.2004.11.001
  • Mattheis J , Rostan PJ , Rau U , et al . Carrier collection in Cu(In, Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts. Sol Energ Mat Sol C. 2007;91:689– 695 .10.1016/j.solmat.2006.12.014
  • Burstein E . Anomalous optical absorption limit in InSb. Phys Rev. 1954;93:632– 633 .10.1103/PhysRev.93.632
  • Moss TS . The Interpretation of the properties of indium antimonide. Proc Phys Soc Lond B. 1954;67:775– 782 .10.1088/0370-1301/67/10/306
  • Sernelius BE , Berggren KF , Jin ZC , et al . Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B. 1988;37:10244– 10248 .10.1103/PhysRevB.37.10244
  • Roth AP , Webb JB , Williams DF . Band-gap narrowing in heavily defect-doped ZnO. Phys Rev B. 1982;25:7836– 7839 .10.1103/PhysRevB.25.7836
  • Myong SY , Steinhauser J , Schluchter R , et al . Temperature dependence of the conductivity in large-grained boron-doped ZnO films. Sol Energ Mat Sol C. 2007;91:1269– 1274 .10.1016/j.solmat.2007.04.022
  • Steinhauser J , Fay S , Oliveira N , et al . Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl Phys Lett. 2007;90.142017
  • Agashe C , Kluth O , Hüpkes J , et al . Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. J Appl Phys. 2004;95:1911– 1917 .10.1063/1.1641524
  • Shafarman WN , Huang RXS , Stephens SH . Characterization of Cu(InGa)Se2 solar cells using etched absorber layers. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion; Waikoloa, HI, USA; Vol. 1–2. 2006. p. 420–423.
  • Birkmire RW , McCandless BE . Specular CuInSe2 films for solar-cells. Appl Phys Lett. 1988;53:140– 141 .10.1063/1.100576
  • Ritter D , Weiser K . Suppression of interference fringes in absorption measurements on thin films. Opt Commun. 1986;57:336– 338 .10.1016/0030-4018(86)90270-1
  • Wei SH , Zunger A . Band offsets and optical bowings of chalcopyrites and Zn-based II–VI alloys. J Appl Phys. 1995;78:3846– 3856 .10.1063/1.359901
  • Han SH , Hasoon FS , Hermann AM , et al . Spectroscopic evidence for a surface layer in CuInSe2: Cu deficiency. Appl Phys Lett. 2007;91:021904.
  • Chen RZ , Persson C . Band-edge density-of-states and carrier concentrations in intrinsic and p-type CuIn1–xGaxSe2 . J Appl Phys. 2012;112.103708.
  • Zhang SB , Wei SH , Zunger A , et al . Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B. 1998;57:9642– 9656 .10.1103/PhysRevB.57.9642
  • Kuznetsova TV , Grebennikov VI , Zhao H , et al . A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content. Appl Phys Lett. 2012;101.11607.
  • Dinca SA , Schiff EA , Egaas B , et al . Hole drift mobility measurements in polycrystalline CuIn1–xGaxSe2 . Phys Rev B. 2009;80:235201.
  • Erslev PT , Lee JW , Shafarman WN , et al . The influence of Na on metastable defect kinetics in CIGS materials. Thin Solid Films. 2009;517:2277– 2281 .10.1016/j.tsf.2008.10.140
  • Heath JT , Cohen JD , Shafarman WN , et al . Effect of Ga content on defect states in CuIn1–xGaxSe2 photovoltaic devices. Appl Phys Lett. 2002;80:4540– 4542 .10.1063/1.1485301
  • Shioda T , Chichibu S , Irie T , et al . Influence of nonstoichiometry on the Urbach’s tails of absorption spectra for CuInSe2 single crystals. J Appl Phys. 1996;80:1106– 1111 .10.1063/1.362914
  • Feurer T , Bissig B , Weiss TP , et al . Single-graded CIGS with narrow bandgap for tandem solar cells. Sci Technol Adv Mater. 2018;19:263–270.10.1080/14686996.2018.1444317
  • Byrnes SJ . Multilayer optical calculations. arXiv.org. 2016;1603:02720.
  • Krc J , Cernivec G , Campa A , et al . Optical and electrical modeling of Cu(In, Ga)Se2 solar cells. Opt Quant Electron. 2006;38:1115–1123.
  • Nishiwaki S , Feurer T , Bissig B , et al . Precise Se-flux control and its effect on Cu(In, Ga)Se2 absorber layer deposited at low substrate temperature by multi stage co-evaporation. Thin Solid Films. 2017;633:18–22.10.1016/j.tsf.2016.10.057