12,647
Views
142
CrossRef citations to date
0
Altmetric
Focus on Organic and Hybrid Photovoltaics

Perovskite solar cells: must lead be replaced – and can it be done?

ORCID Icon, ORCID Icon, , , &
Pages 425-442 | Received 21 Dec 2017, Accepted 29 Mar 2018, Published online: 24 May 2018

References

  • Lee MM , Teuscher J , Miyasaka T , et al . Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science. 2012;338:643–647.10.1126/science.1228604
  • Burschka J , Pellet N , Moon SJ , et al . Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319.10.1038/nature12340
  • Zhou HP , Chen Q , Li G , et al . Interface engineering of highly efficient perovskite solar cells. Science. 2014;345:542–546.10.1126/science.1254050
  • Bai YB , Wang QY , Lv RT , et al . Progress on perovskite-based solar cells. Chin Sci Bull. 2016;61:489–500.
  • Mei AY , Li X , Liu LF , et al . A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science. 2014;345:295–298.10.1126/science.1254763
  • Cui J , Yuan HL , Li JP , et al . Recent progress in efficient hybrid lead halide perovskite solar cells. Sci Technol Adv Mater. 2015;16:036004–036017.10.1088/1468-6996/16/3/036004
  • Shi ZJ , Guo J , Chen YH , et al . Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater. 2017;29:1605005–1605032.10.1002/adma.201605005
  • Yang SD , Fu WF , Zhang ZQ , et al . Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A. 2017;5:11462–11482.10.1039/C7TA00366H
  • Jeon NJ , Noh JH , Yang WS , et al . Compositional engineering of perovskite materials for high-performance solar cells. Nature. 2015;517:476–480.10.1038/nature14133
  • Best research-cell efficiencies. National Renewable Energy Laboratory (NREL). Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png
  • Yao ZB , Wang WL , Shen HP , et al . CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Sci Technol Adv Mater. 2017;18:253–262. doi:10.1080/14686996.2017.1298974.
  • Han JH , Yin XW , Nan H , et al . Enhancing the performance of perovskite solar cells by hybridizing SnS quantum dots with CH3NH3PbI3 . Small. 2017;13:1700953. doi:10.1002/smll.201700953.
  • Yin X , Yao Z , Luo Q , et al . High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS appl mater interfaces. 2017;9(3):2439–2448.10.1021/acsami.6b13372
  • Zhao XY , Shen HP , Zhou C , et al . Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol-gel method for potential applications in perovskite solar cell. Thin Solid Films. 2016;605:208–214.10.1016/j.tsf.2015.11.001
  • Li EZ , Guo Y , Liu T , et al . Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell. RSC Adv. 2016;6(37):30978–30985.10.1039/C5RA27434F
  • Luo Q , Ma H , Zhang Y , et al . Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J Mater Chem A. 2016;4:5569–5577.10.1039/C6TA01715 K
  • Zhao XY , Shen HP , Zhang Y , et al . Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells. ACS Appl Mater Interfaces. 2016;8:7826–7833.10.1021/acsami.6b00520
  • Dai XZ , Zhang Y , Shen HP , et al . Working from both sides: composite metallic semitransparent top electrode for high performance perovskite solar cells. ACS Appl Mater Interfaces. 2016;6:21156–21164.
  • Luo Q , Zhang Y , Liu CY , et al . Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J Mater Chem A. 2015;3:15996–16004.10.1039/C5TA02710A
  • Assistance to newly arrived refugee children train the trainer presentation . Centers for disease control and prevention. Available from: https://www.cdc.gov/nceh/lead/publications/refugeetoolkit/powerpoint_files/medicalservice.ppt
  • Li CH , Lu XG , Ding WZ , et al . Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B. 2008;64(6):702–707.10.1107/S0108768108032734
  • Perdew JP , Zunger A . Self-interaction correction to density-functional approximations for many-electrons systems. J Phys Condens Mater. 1981;23:5048–5079.
  • Hohenberg P , Kohn W . Inhomogeneous electron gas. Phys Rev. 1964;136:B864.10.1103/PhysRev.136.B864
  • Gianozzi P . Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Mater. 2009;21:395502.10.1088/0953-8984/21/39/395502
  • Vanderbilt D . Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892.10.1103/PhysRevB.41.7892
  • Troullier N , Martins JL . Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43:1993.10.1103/PhysRevB.43.1993
  • Kresse G , Hafner J . Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B. 1994;49:14251–14269.10.1103/PhysRevB.49.14251
  • Kresse G , Furthmüller J . Efficient interative schemes for ab initio total-energy calculations using a plane-wave bassis set. Phys Rev B. 1996;54:11169–11186.10.1103/PhysRevB.54.11169
  • Kresse G , Furthmüller J . Efficiency of ab initio total energy calculations for metals and semiconductors using a plane wave bassis set. Comput Mater Sci. 1996;6:15–50.10.1016/0927-0256(96)00008-0
  • Perdew JP , Ruzsinszky A , Csonka GI , et al . Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008;100:136406.10.1103/PhysRevLett.100.136406
  • Krukau AV , Vydrov OA , Izmaylov AF , et al . Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. 2006;125:224106.10.1063/1.2404663
  • Perdew J , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • Blochl P . Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.10.1103/PhysRevB.50.17953
  • Gajdoš M , Hummer K , Kresse G , et al . Linear optical properties in the projector-augmented wave methodology. Phys Rev B. 2006;73:045112.10.1103/PhysRevB.73.045112
  • Yu L , Zunger A . Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys Rev Lett. 2012;108:068701.10.1103/PhysRevLett.108.068701
  • Noel NK , Stranks SD , Abate A , et al . Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci. 2014;7:3061–3068.10.1039/C4EE01076 K
  • Krishnamoorthy T , Ding H , Yan C , et al . Lead-free germanium iodide perovskite materials for photovoltaic applications. J Mater Chem A. 2015;3:23829–23832.10.1039/C5TA05741H
  • Yang DW , Lv J , Zhao XG , et al . Functionality-directed screening of Pb-free hybrid organic–inorganic perovskites with desired intrinsic photovoltaic functionalities. Chem Mater. 2017;29:524–538.10.1021/acs.chemmater.6b03221
  • Wang K , Liang Z , Wang XQ , et al . Lead replacement in CH3NH3PbI3 Perovskites. Adv Electron Mater. 2015;1:1500089.10.1002/aelm.201500089
  • Navas J , Antonio SC Juan JG , et al. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+ . Nanoscale. 2015; 7: 6216–6229.10.1039/C5NR00041F
  • Filip MR , Giustino F . Computational screening of homovalent lead substitution in organic–inorganic halide perovskites. J Phys Chem C. 2016;120:166–173.10.1021/acs.jpcc.5b11845
  • Vasala S , Karppinen M . A2B’B”O6 perovskites: A review. Prog Solid State Chem. 2015;43:1–36.10.1016/j.progsolidstchem.2014.08.001
  • Morrs LR , Robinson WR . Crystal structure of Cs2NaBiCl6 . Acta Crystallogr Sect B. 1972;28:653–654.10.1107/S0567740872002948
  • Pelle F , Jacquier B , Denis J , et al . Optical properties of Cs2NaBiCl6 . J Lumin. 1978;17:61–72.10.1016/0022-2313(78)90026-1
  • Smit W , Dirksen G , Stufkens D . Infrared and raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: evidence for a pseudo Jahn-Teller distorted ground state. J Phys Chem Solids. 1990;51:189–196.10.1016/0022-3697(90)90092-T
  • Volonakis G , Filip MR , Haghighirad AA , et al . Lead-Free halide double perovskites via heterovalent substitution of noble metals. J Phys Chem Lett. 2016;7:1254–1259.10.1021/acs.jpclett.6b00376
  • Zhao XG , Yang JH , Fu YH . Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J Am Chem Soc. 2017;139:2630–2638.10.1021/jacs.6b09645
  • Savory CN , Walsh A , Scanlon DO . Can Pb-free halide double perovskites support high-efficiency solar cells? ACS Energy Lett. 2016;1:949–955.10.1021/acsenergylett.6b00471
  • Wei FX , Deng ZY , Sun SJ , et al . The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater Horiz. 2016;3:328–332.10.1039/C6MH00053C
  • Tanner PA , Duan CK , Cheng BM . Excitation and emission spectra of Cs2NaLnCl6 crystals using synchrotron radiation. Spectrosc Lett. 2010;43:431–445.10.1080/00387010.2010.505856
  • Jia GH , Cheng BM , Duan CK , et al . Low temperature photoluminescence of Cs2NaY1-xErxCl6 excited by synchrotron radiation. Chem Phys Lett. 2011;515:235–240.10.1016/j.cplett.2011.09.033
  • Tanner PA , Duan CK , Jia GH , et al . Luminescence of the elpasolite series MI2MIIMCl6 (MI=Cs, Rb; MII=Li, Na; M=Lu, Y, Sc, In) doped with europium using synchrotron radiation excitation. J Solid State Chem. 2012;188:105–108.10.1016/j.jssc.2012.01.047
  • Loef EVDV , Dorenbos P , Eijk CWEV , et al . Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl, Br). J Phys Condens Mater. 2002;14:8481–8496.10.1088/0953-8984/14/36/307
  • Birowosuto MD , Dorenbos P , Eijk CWE , et al . Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La,Y, Lu). J Phys Condens Mater. 2006;18:6133–6148.10.1088/0953-8984/18/26/031
  • Giustino F , Snaith HJ . Toward lead-free perovskite solar cells. ACS Energy Lett. 2016;1:1233–1240.10.1021/acsenergylett.6b00499
  • Bansode U , Naphade R , Game O , et al . Hybrid perovskite films by a new variant of pulsed excimer laser deposition: a room-temperature dry process. J Phys Chem C. 2015;119:9177–9185.10.1021/acs.jpcc.5b02561
  • Eperon GE , Leijtens T , Bush KA , et al . Perovskite-perovskite tandem photovoltaics with ideal bandgaps. Science. 2016;354(6314):861–865.10.1126/science.aaf9717
  • Mao LL , Tsai H , Nie WY , et al . Role of organic counterion in lead- and tin-based two-dimensional semiconducting iodide perovskites and application in planar solar cells. Chem Mater. 2016;28:7781–7792.10.1021/acs.chemmater.6b03054
  • Xu ZT , Mitzi DB , Dimitrakopoulos CD , et al . Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X= F, Cl, Br): steric interaction between the organic and inorganic layers. Inorg Chem. 2003;42:2031–2039.10.1021/ic0261474
  • Chung I , Lee B , He JQ , et al . All-solid-state dye-sensitized solar cells with high efficiency. Nature. 2012;485:486–490.10.1038/nature11067
  • Xu P , Chen SY , Xiang HJ , et al . Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3 . Chem Mater. 2014;26:6068–6072.10.1021/cm503122j
  • Marshall KP , Walton RI , Hatton RA . Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J Mater Chem A. 2015;3:11631–11640.10.1039/C5TA02950C
  • Mauersberger P , Huber F . Structure of caesium triiodostannate(II). Acta Cryst. 1980;B36:683–684.10.1107/S0567740880004128
  • Yamada K , Funabiki S , Horimoto H , et al . Structural phase transitions of the polymorphs of CsSnI3 by means of rietveld analysis of the X-ray diffraction. Chem Lett. 1991;20:801–804.10.1246/cl.1991.801
  • Scaife DE , Weller PF , Fisher WG , et al . Crystal preparation and properties of cesium tin(II) trihalides. J Solid State Chem. 1974;9:308–314.10.1016/0022-4596(74)90088-7
  • Chung I , Song JH , Im J , et al . CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J Am Chem Soc. 2012;134:8579–8587.10.1021/ja301539s
  • Borriello I , Cantele G , Ninno D . Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys Rev B. 2008;77:235214.10.1103/PhysRevB.77.235214
  • Marshall KP , Walker M , Walton RI , et al . Enhanced stability and effciency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat Energy. 2016;1:1–9.
  • Marshall KP , Walker M , Walton RI , et al . Elucidating the role of the hole-extracting electrode on the stability and efficiency of inverted CsSnI3/C60 perovskite photovoltaics. J Phys Chem A. 2017;5:21836–21845.
  • Yan Y . Perovskite solar cells: high voltage from ordered fullerenes. Nat Energy. 2016;1:15007.10.1038/nenergy.2015.7
  • Shao Y , Yuan Y , Huang J . Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat Energy. 2016;1:15001.10.1038/nenergy.2015.1
  • Kumar MH , Dharani S , Leong WL , et al . Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv Mater. 2014;26:7122–7127.10.1002/adma.201401991
  • Peedikakkandya L , Bhargava P . Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Adv. 2016;6:19857–19860.10.1039/C5RA22317B
  • Sabba D , Mulmudi HK , Prabhakar RR , et al . Impact of anionic Br- substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) Solar Cells. J Phys Chem C. 2015;119:1763–1767.10.1021/jp5126624
  • Jellicoe TC , Richter JM , Glass HFJ , et al . Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J Am Chem Soc. 2016;138:2941–2944.10.1021/jacs.5b13470
  • Xi J , Wu ZX , Jiao B , et al . Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv Mater. 2017;29:1606964.10.1002/adma.201606964
  • Wang N , Zhou YY , Ju MG , et al . Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv Energy Mater. 2016;6(24):1601130.10.1002/aenm.201601130
  • Lee BH , Stoumpos CC , Zhou NJ , et al . Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J Am Chem Soc. 2014;136:15379–15385.10.1021/ja508464w
  • Qiu XF , Jiang YN , Zhang HL , et al . Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys Status Solid RRL. 2016;10(8):587–591.10.1002/pssr.v10.8
  • Qiu XF , Cao BQ , Yuan S .  From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials & Solar Cells. 2017;59:227–234.10.1016/j.solmat.2016.09.022
  • Hao F , Stoumpos CC , Guo PJ , et al . Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc. 2015;137:11445–11452.10.1021/jacs.5b06658
  • Ogomi Y , Morita A , Tsukamoto S , et al .  CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett. 2014;5:1004–1011.10.1021/jz5002117
  • Hao F , Stoumpos CC , Chang RPH , et al . Anomalous band gap behavior in mixed Sn and Pb perovskites. J Am Chem Soc. 2014;136:8094–8099.10.1021/ja5033259
  • Mosconi E , Umaribc P , Ang FD . Electronic and optical properties of mixed Sn–Pb organohalide perovskites: a first principles investigation. J Mater Chem A. 2015;3:9208–9215.10.1039/C4TA06230B
  • Im J , Stoumpos CC , Jin H , et al . Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1–xPbxI3 . J Phys Chem Lett. 2015;6(17):3503–3509.10.1021/acs.jpclett.5b01738
  • Ju MG , Sun GX , Zhao Y , et al . A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Phys Chem Chem Phys. 2015;17:17679–17687.10.1039/C5CP01991E
  • Hao F , Stoumpos CC , Cao DH , et al . Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics. 2014;8:489–494.10.1038/nphoton.2014.82
  • Zuo F , Williams ST , Liang PW , et al . Binary-metal perovskites toward high-performance planar-heterojunctionhybrid solar cells. Adv Mater. 2014;26:6454–6460.10.1002/adma.201401641
  • Jung MC , Raga SR Qi YB . Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition. RSC Adv. 2016; 6: 2819–2825.10.1039/C5RA21291 J
  • Yokoyama T , Cao DH , Stoumpos CC , et al . Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J Phys Chem Lett. 2016;7:776–782.10.1021/acs.jpclett.6b00118
  • Parrott ES , Milot RL , Stergiopoulos T , et al . Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J Phys Chem Lett. 2016;7:1321–1326.10.1021/acs.jpclett.6b00322
  • Ma L , Hao F , Stoumpos CC , et al .  Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J Am Chem Soc. 2016;138:14750–14755.10.1021/jacs.6b09257
  • Amat A , Mosconi E , Ronca E , et al . Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 2014;14:3608–3616.10.1021/nl5012992
  • Koh TM , Fu K , Fang Y , et al . Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. J Phys Chem C. 2014;118:16458–16462.10.1021/jp411112 k
  • Koh TM , Krishnamoorthy T , Yantara N . Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J Mater Chem A. 2015;3:14996–15000.10.1039/C5TA00190 K
  • Lee SJ , Shin SS , Kim YC , et al . Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J Am Chem Soc. 2016;138:3974–3977.10.1021/jacs.6b00142
  • Liao WQ , Zhao DW , Yu Y , et al . Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater. 2016;28:9333–9340.10.1002/adma.201602992
  • Yang ZB , Rajagopal A , Chueh CC , et al . Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv Mater. 2016;28:8990–8997.10.1002/adma.v28.40
  • Zhang M , Lyu MQ , Yun JH , et al . Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Res. 2016;9(6):1570–1577.10.1007/s12274-016-1051-8
  • Tsai H , Nie W , Blancon JC , et al . High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature. 2016;536:312–316.10.1038/nature18306
  • Lanzetta L , Marin-Beloqui JM , Sanchez-Molina I , et al . Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2017;2:1662–1668.10.1021/acsenergylett.7b00414
  • Liao YQ , Liu HF , Zhou WJ , et al . Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J Am Chem Soc. 2017;139:6693–6699.10.1021/jacs.7b01815
  • Stoumpos CC , Frazer L , Clark DJ , et al . Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J Am Chem Soc. 2015;137:6804–6819.10.1021/jacs.5b01025
  • Sun PP , Li QS , Yang LN , et al . Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+ . Nanoscal. 2016;8:1503–1512.10.1039/C5NR05337D
  • Li W , Dong H , Wang L , et al . Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J Mater Chem A. 2014;2:13587–13592.10.1039/C4TA01550A
  • Park BW , Philippe B , Zhang XL , et al . Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for solar cell application. Adv Mater. 2015;27:6806–6813.10.1002/adma.201501978
  • Lehner AJ , Fabini DH , Evans HA , et al . Crystal and electronic structure of complex bismuth iodides A3Bi2I9 (A= K, Rb, Cs) related to perovskite: Aiding the rational design of photovoltaics. Chem Mater. 2015;27:7137–7148.10.1021/acs.chemmater.5b03147
  • Huang X , Huang S , Biswas P , et al . Band gap insensitivity to large chemical pressures in ternary bismuth iodides for photovoltaic applications. J Phys Chem C. 2016;120:28924–28932.10.1021/acs.jpcc.6b09567
  • Pazoki M , Johansson MB , Zhu HM , et al . Bismuth iodide perovskite materials for solar cell applications: electronic structure, optical transitions, and directional charge transport. J Phys Chem C. 2016;120:29039–29046.10.1021/acs.jpcc.6b11745
  • Lyu MQ , Yun JH , Cai ML , et al . Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research. 2016;9(3):692–702.10.1007/s12274-015-0948-y
  • Singh T , Kulkarni A , Ikegami M , et al . Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces. 2016;8:14542–14547.10.1021/acsami.6b02843
  • McClure ET , Ball MR , Windl W , et al . Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater. 2016;28:1348–1354.10.1021/acs.chemmater.5b04231
  • Slavney AH , Hu T , Lindenberg AM , et al . A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc. 2016;138:2138–2141.10.1021/jacs.5b13294
  • Filip MR , Hillman S , Haghighirad AA , et al . Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment. J Phys Chem Lett. 2016;7:2579–2585.10.1021/acs.jpclett.6b01041
  • Slavney AH , Leppert L , Bartesaghi D , et al . Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J Am Chem Soc. 2017;139:5015–5018.10.1021/jacs.7b01629
  • Saparov B , Hong F , Sun JP , et al . Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem Mater. 2015;27(16):5622–5632.10.1021/acs.chemmater.5b01989
  • Harikesh PC , Mulmudi HK , Ghosh B , et al . Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics. Chem Mater. 2016;28:7496–7504.10.1021/acs.chemmater.6b03310
  • Hebig JC , Kühn I , Flohre J , et al. Optoelectronic Properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 2016; 1: 309–314.10.1021/acsenergylett.6b00170
  • Wang ZK , Li M , Yang YG , et al . High efficiency Pb-In binary metal perovskite solar cells. Adv Mater. 2016;28:6695–6703.10.1002/adma.201600626
  • Xiao ZW , Du KZ , Meng WW , et al . Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: A combined density functional theory and experimental study. J Am Chem Soc. 2017;139:6054–6057.10.1021/jacs.7b02227
  • Volonakis G , Haghighirad AA , Milot RL , et al . Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J Phys Chem Lett. 2017;8:772–778.10.1021/acs.jpclett.6b02682
  • Zhao XG , Yang DW , Sun YH , et al . Cu–In halide perovskite solar absorbers. J Am Chem Soc. 2017;139:6718–6725.10.1021/jacs.7b02120
  • Willett R , Place H , Middleton M . Crystal structures of three new copper(II) halide layered perovskites: structural, crystallographic, and magnetic correlations. J Am Chem Soc. 1988;110:8639–8650.10.1021/ja00234a010
  • Polyakov AO , Arkenbout AH , Baas J , et al . Coexisting ferromagnetic and ferroelectric order in a CuCl4-based organic-inorganic hybrid. Chem Mater. 2012;24:133–139.10.1021/cm2023696
  • Staulo G , Bellitto C . (C6H5CH2NH3)2CrBr3.3I0.7–a new insulating ferromagnet with a Curie-temperature of 51 K. J Mater Chem. 1991; 1: 915–918.10.1039/jm9910100915
  • Amstel W , Jongh L . Magnetic measurements on (CH3NH3)2MnCl4, a quasi two-dimensional Heisenberg antiferromagnet. Solid State Commun. 1972;11:1423–1429.10.1016/0038-1098(72)90557-1
  • Han J , Nishihara S , Inoue K , et al . High magnetic hardness for the canted antiferromagnetic, ferroelectric, and ferroelastic layered perovskite-like (C2H5NH3)2[FeIICl4]. Inorg Chem. 2015;54:2866–2874.10.1021/ic5030229
  • Nakajima T , Yamauchi H , Goto T , et al . Magnetic and elastic properties of (CH3NH3)2FeCl4 and (C2H5NH3)2FeCl4 . J Magn Magn Mater. 1983;31–34:1189–1190.10.1016/0304-8853(83)90857-0
  • Cortecchia D , Dewi HA , Yin J , et al . Lead-free MA2CuClxBr4-x hybrid perovskites. Inorg Chem. 2016;55(3):1044–1052.10.1021/acs.inorgchem.5b01896
  • Singh P , Rana PJS , Dhingra P , et al . Towards toxicity removal in lead based perovskite solar cells by compositional gradient using manganese chloride. J Mater Chem C. 2016;4(15):3101–3105.10.1039/C6TC00650G