2,761
Views
39
CrossRef citations to date
0
Altmetric
Focus on Energy Harvesting - Science, Technology, Application and Metrology

Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

, , , , , , , , , , , , & show all
Pages 443-453 | Received 09 Jan 2018, Accepted 29 Mar 2018, Published online: 24 May 2018

References

  • Gubbi J , Buyya R , Marusic S , et al . Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29(7):1645–1660.10.1016/j.future.2013.01.010
  • Mitcheson PD , Yeatman EM , Rao GK , et al . Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE. 2008;96:1457–1486.10.1109/JPROC.2008.927494
  • Hudak NS , Amatucci GG . Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Appl Phys Rev. 2008;103:101301.10.1063/1.2918987
  • Tritt TM , Subramanian MA . Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bulletin. 2006;31:188–198.10.1557/mrs2006.44
  • Snyder GJ , Toberer ES . Complex thermoelectric materials. Nat Mater. 2008;7:105–114.10.1038/nmat2090
  • Liu W , Hu J , Zhang S , et al . New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater Today Phys. 2017;1:50–60.10.1016/j.mtphys.2017.06.001
  • Mori T . Novel principles and nanostructuring methods for enhanced thermoelectrics. Small. 2017;13:1702013.10.1002/smll.v13.45
  • Priya S , Inman DJ . Energy harvesting technologies. New York: Springer, 2009. p. 326.
  • Venkatasubramanian R , Siivola E , Colpitts T , et al . Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597–602.10.1038/35098012
  • Hochbaum AI , Chen R , Delgado RD , et al . Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008;451:163–167.10.1038/nature06381
  • Boukai AI , Bunimovich Y , Tahir-Kheli, J. , et al . Silicon nanowires as efficient thermoelectric materials. Nature. 2008;451:169–171.
  • Shakouri A . Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res. 2011;41:399–431.10.1146/annurev-matsci-062910-100445
  • Nakamura Y . Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Sci Technol Adv Mater. 2018;19:31–43.10.1080/14686996.2017.1413918
  • Li Y , Buddharaju K , Singh N , et al . Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology. IEEE Electr Devices Lett. 2011;32:674–676.10.1109/LED.2011.2114634
  • Dávila D , Tarancón A , Calaza C , et al . Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices. Nano Energy. 2012;1:812–819.10.1016/j.nanoen.2012.06.006
  • Fonseca L , Santos J-D , Roncaglia A , et al . Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators. Semicond. Sci. Technol. 2016;31:084001.10.1088/0268-1242/31/8/084001
  • Carmo JP , Gonçalves LM , Correia JH . Thermoelectric microconverter for energy harvesting systems. IEEE Trans Ind Electron. 2010;57:861–867.10.1109/TIE.2009.2034686
  • Li Y , Buddharaju K , Singh N , et al . Top-down silicon nanowire-based thermoelectric generator: design and characterization. J Electron Mater. 2012;41:989–992.10.1007/s11664-012-1901-4
  • Glosch H , Ashauer M , Pfeiffer U , et al . A thermoelectric converter for energy supply. Sens Actuators, A. 1999;74:246–250.10.1016/S0924-4247(98)00298-2
  • Strasser M , Aigner R , Lauterbach C , et al . Micromachined CMOS thermoelectric generators as on-chip power supply. Sens Actuators, A. 2004;114:362–370.10.1016/j.sna.2003.11.039
  • Bottner H , Nurnus J , Gavrikov AG , et al . New thermoelectric components using microsystem technologies. J Microelectromech Syst. 2004;13:414–420.10.1109/JMEMS.2004.828740
  • Zhang T , Wu S , Xu J , et al . High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays. Nano Energy. 2015;13:433–441.10.1016/j.nanoen.2015.03.011
  • Rowe DM , Thermoelectrics handbook: macro to nano. Boca Raton: CRC Press; 2005. p. 11–14.
  • Watanabe T , Asada S , Xu T , et al. A scalable Si-based micro thermoelectric generator. Proceedings of Technical Papers IEEE Electron Devices Technology and Manufacturing Conference (EDTM); Toyama; 2017. p. 86–87.10.1109/EDTM.2017.7947519
  • Zhang H , Xu T , Hashimoto H , et al. The possibility of mW/cm2-class on-chip power generation using ultrasmall Si nanowire-based thermoelectric generators. IEEE Trans Electron Devices. 2018;65:2016–2023.
  • Hashimoto S , Asada S , Xu T , et al . Anomalous Seebeck coefficient observed in silicon nanowire micro thermoelectric generator. Appl Phys Lett. 2017;111:023105.10.1063/1.4993150
  • Kato R , Xu Y , Goto M . Development of a frequency-domain method using completely optical techniques for measuring the interfacial thermal resistance between the metal film and the substrate. Jpn J Appl Phys. 2011;50:106602.10.7567/JJAP.50.106602
  • Zhan T , Xu Y , Goto M , et al . Thermal conductivity of sputtered amorphous Ge films. AIP Adv. 2014;4:027126.10.1063/1.4867122
  • Zhan T , Wang HD , Xu Y . Unexpectedly high thermal boundary resistance of Cr/graphene/SiO2 structure. Jpn J Appl Phys. 2017;56:055101.10.7567/JJAP.56.055101
  • Zhan T , Xu Y , Goto M , et al . Thermal boundary resistance at Au/Ge/Ge and Au/Si/Ge interfaces. RSC Adv. 2015;5:49703–49707.10.1039/C5RA04412J
  • Weber L , Gmelin E . Transport properties of silicon. Appl Phys A. 1991;53:136–140.10.1007/BF00323873
  • Benedicks MC . Acad Sci Comptes Renus. 1917;165:391.
  • Bogner M , Benstetter G , Fu YQ . Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method. Surf Coat Technol. 2017;320:91–96.10.1016/j.surfcoat.2017.01.100
  • Zhan T , Xu Y , Goto M , et al . Phonons with long mean free paths in a-Si and a-Ge. Appl. Phys. Lett. 2014;104:071911.10.1063/1.4866799
  • Zhan T , Goto M , Xu Y , et al . Modification of thermal conductivity and thermal boundary resistance of amorphous Si films by Al doping. RSC Adv. 2017;7:7901.10.1039/C6RA27437D
  • Slack G , Tanzilli RA , Pohl RO , et al . The intrinsic thermal conductivity of AIN. J Phys Chem Solids. 1987;48:641–647.10.1016/0022-3697(87)90153-3
  • Zhao Y , Zhu C , Wang S , et al . Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films. J Appl Phys. 2004;96:4563–4568.10.1063/1.1785850
  • Swartz ET , Pohl RO . Thermal boundary resistance. Rev Mod Phys. 1989;61:605–668.10.1103/RevModPhys.61.605
  • Zhan T , Fang L , Xu Y . Prediction of thermal boundary resistance by the machine learning method. Sci Rep. 2017;7:7109.10.1038/s41598-017-07150-7
  • Hopkins PE , Thermal transport across solid interfaces with nanoscale imperfections: effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mechanical Engineering; 2013, Article ID 682586.
  • Xu Y , Kato R , Goto M . Effect of microstructure on Au/sapphire interfacial thermal resistance. J Appl Phys. 2010;108:104317.10.1063/1.3514563
  • Yagi T , Oka N , Okabe T , et al. Effect of oxygen impurities on thermal diffusivity of AlN thin films deposited by reactive RF magnetron sputtering. Jpn J Appl Phys. 2011;50:11RB01. 10.7567/JJAP.50.11RB01