4,267
Views
43
CrossRef citations to date
0
Altmetric
Energy Materials

Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery

ORCID Icon, ORCID Icon &
Pages 454-464 | Received 12 Feb 2018, Accepted 19 Apr 2018, Published online: 25 May 2018

References

  • Wang Y , Liu B , Li Q , et al . Lithium and lithium ion batteries for applications in microelectronic devices: a review. J Power Sources . 2015:330–345.
  • Kim JG , Son B , Mukherjee S , et al . A review of lithium and non-lithium based solid state batteries. J. Power Sources. 2015;282:299–322.10.1016/j.jpowsour.2015.02.054
  • Zhou G , Li F , Cheng H-M . Progress in flexible lithium batteries and future prospects. Energy Environ Sci. 2014;7(4):1307–1338.10.1039/C3EE43182G
  • Gwon H , Hong J , Kim H , et al . Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci. 2014;7(2):538.10.1039/C3EE42927 J
  • MarketsandMarkets . Flexible battery market by type (thin-film (lithium-ion, lithium polymer), printed, curved), chargeability (rechargeable, single-use), application (packaging, smart card, wearable devices, consumer electronics, medical devices) – Global forecast to 2022 ; 2017.
  • Hu Y , Sun X . Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A. 2014;2(28):10712.10.1039/C4TA00716F
  • Kutbee AT , Ghoneim MT , Ahmad SM , et al . Free-form flexible lithium-ion microbattery. IEEE Trans Nanotechnol. 2016;15(3):402–408.10.1109/TNANO.2016.2537338
  • Song SW , Lee KC , Park HY . High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J. Power Sources. 2016;328:311–317.10.1016/j.jpowsour.2016.07.114
  • Song SW , Choi H , Park HY , et al . High rate-induced structural changes in thin-film lithium batteries on flexible substrate. J. Power Sources. 2010;195(24):8275–8279.10.1016/j.jpowsour.2010.06.113
  • Li Q , Ardebili H . Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J. Power Sources. 2016;303:17–21.
  • Han J , Pyun SI . Application of laser beam deflection technique to analysis of stresses generated during hydrogen diffusion through Pd foil electrode. J Korean Electrochem Soc. 2001;4(2):70–76.
  • Chang TA , Chen KC . Bending stress analysis of all solid state flexible lithium battery. In 231st ECS Meeting ; 2017.
  • Koo M , Park K. Il , Lee SH . Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012;12(9):4810–4816.10.1021/nl302254v
  • Ning F , Li S , Xu B , et al . Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: a first principles study. Solid State Ionics. 2014;263:46–48.10.1016/j.ssi.2014.05.008
  • Gaikwad AM , Chu HN , Qeraj R , et al . Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energy Technol. 2013;1(2–3):177–185.10.1002/ente.v1.2/3
  • ENrG-Inc.com [Internet]. Buffalo (NY): ENrG Inc. [cited 2018 Mar 28]. Available from: https://www.enrg-Inc.com/technology
  • Kim W , Lee I , Kim DY . Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic photovoltaics. Nanotechnology. 2017;28(19):194002.10.1088/1361-6528/aa6a44
  • Yan H-J , Wang Z-Q , Xu B , et al . Strain induced enhanced migration of polaron and lithium ion in λ- MnO2 . Funct Mater Lett. 2012;05(04):1250037.10.1142/S1793604712500373
  • Ataca C , Şahin H , Ciraci S . Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C. 2012;116(16):8983–8999.10.1021/jp212558p
  • Pereira T , Scaffaro R , Nieh S , et al . The performance of thin-film Li-ion batteries under flexural deflection. J Micromech Microeng. 2006;16(12):2714–2721.10.1088/0960-1317/16/12/026
  • Kammoun M , Berg S , Ardebili H . Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale. 2015;7(41):17516–17522.10.1039/C5NR04339E
  • Glenneberg J , Andre F , Bardenhagen I , et al . A concept for direct deposition of thin film batteries on flexible polymer substrate. J Power Sources. 2016;324:722–728.10.1016/j.jpowsour.2016.06.007
  • McDowell MT , Ryu I , Lee SW , et al . Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater. 2012;24(45):6034–6041.10.1002/adma.v24.45
  • Liu Y , Zhang S , Zhu T . Germanium-based electrode materials for lithium-ion batteries. ChemElectroChem. 2014;1(4):706–713.10.1002/celc.201300195
  • Liu XH , Fan F , Yang H , et al . Self-limiting lithiation in silicon nanowires. ACS Nano. 2013;7(2):1495–1503.10.1021/nn305282d
  • Qi Y , Hector LG , James C , et al . Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations. J Electrochem Soc. 2014;161(11):F3010–F3018.10.1149/2.0031411jes
  • Kazyak E , Wood KN , Dasgupta NP . Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem Mater. 2015;27(18):6457–6462.10.1021/acs.chemmater.5b02789
  • Kozen AC , Lin C-F , Pearse AJ , et al . Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015;9(6):5884–5892.10.1021/acsnano.5b02166
  • Ribeiro JF , Sousa R , Cunha DJ , et al . A chemically stable PVD multilayer encapsulation for lithium microbatteries. J Phys D: Appl Phys. 2015;48(39):395306.10.1088/0022-3727/48/39/395306