1,601
Views
6
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Quantitative analysis of {332}〈113〉 twinning in a Ti-15Mo alloy by in situ scanning electron microscopy

ORCID Icon, , , &
Pages 474-483 | Received 16 Feb 2018, Accepted 09 May 2018, Published online: 07 Jun 2018

References

  • Christian JW , Mahajan S . Deformation twinning. Prog Mater Sci. 1995;39:1–157.10.1016/0079-6425(94)00007-7
  • Narita N , Takamura JI . Deformation twinning in f.c.c. and b.c.c. metals. In: Nabarro FRN , editor. Dislocations in solids. Vol. 9. Dislocations and disclinations: North-Holland; 1992. p. 135–190.
  • Tobe H , Kim HY , Inamura T , et al . Origin of 332 twinning in metastable β-Ti alloys. Acta Mater. 2014;64:345–355.10.1016/j.actamat.2013.10.048
  • Kawabata T , Kawasaki S , Izumi O . Mechanical properties of TiNbTa single crystals at cryogenic temperatures. Acta Mater. 1998;46:2705–2715.10.1016/S1359-6454(97)00475-8
  • Hanada S , Takemura A , Izumi O . The mode of plastic deformation of β Ti-V alloys. Trans Jpn Inst Met. 1982;23:507–517.10.2320/matertrans1960.23.507
  • Lai MJ , Tasan CC , Raabe D . On the mechanism of 332 twinning in metastable β titanium alloys. Acta Mater. 2016;111:173–186.10.1016/j.actamat.2016.03.040
  • Hanada S , Ozeki M , Izumi O . Deformation characteristics in Β phase Ti-Nb alloys. Metall Trans A. 1985;16A:789–795.10.1007/BF02814829
  • Hanada S , Izumi O . Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys. Metall Trans A. 1986;17A:1409–1420.10.1007/BF02650122
  • Gutierrez-Urrutia I , Li C-L , Tsuchiya K . {332}<113> detwinning in a multilayered bcc-Ti–10Mo–Fe alloy. J Mater Sci. 2017;52:7858–7867.10.1007/s10853-017-1032-7
  • Bilby BA , Crocker AG . The theory of the crystallography of deformation twinning. Proc R Soc A. 1965;288:240–255.10.1098/rspa.1965.0216
  • Szczerba MS , Bajor T , Tokarski T . Is there a critical resolved shear stress for twinning in face-centred cubic crystals? Phil Mag. 2004;84:481–502.10.1080/14786430310001612175
  • Meyers MA , Vöhringer O , Lubarda VA . The onset of twinning in metals: a constitutive description. Acta Mater. 2001;49:4025–4039.10.1016/S1359-6454(01)00300-7
  • Wang WL , Wang XL , Mei W , et al . Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy. Mater Char. 2016;120:263–267.10.1016/j.matchar.2016.09.016
  • Min X , Emura S , Chen X , et al . Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity β titanium alloy. Mater Sci Eng A. 2016;659:1–11.10.1016/j.msea.2016.01.105
  • Capolungo L , Marshall PE , McCabe RJ , et al . Nucleation and growth of twins in Zr: a statistical study. Acta Mater. 2009;57:6047–6056.10.1016/j.actamat.2009.08.030
  • Beyerlein IJ , Capolungo L , Marshall PE , et al . Statistical analyses of deformation twinning in magnesium. Phil Mag. 2010;90:2161–2190.10.1080/14786431003630835
  • Shi Z-Z , Zhang Y , Wagner F , et al . On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy. Acta Mater. 2015;83:17–28.10.1016/j.actamat.2014.10.004
  • Niezgod SR , Kanjarla AK , Beyerlein IJ , et al . Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals. Int J Plast. 2014;56:119–138.10.1016/j.ijplas.2013.11.005
  • Priestner R , Leslie WC . Nucleation of deformation twins at slip plane intersections in B.C.C metals. Phil Mag. 1965;11:895–916.10.1080/14786436508223953
  • Barnett MR , Keshavarz Z , Beer AG , et al . Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008;56:5–15.10.1016/j.actamat.2007.08.034
  • Gutierrez-Urrutia I , Raabe D . Grain size effect on strain hardening in twinning-induced plasticity steels. Scripta Mater. 2012;66:992–996.10.1016/j.scriptamat.2012.01.037
  • Barnett MR . A rationale for the strong dependence of mechanical twinning on grain size. Scripta Mater. 2008;59:696–698.10.1016/j.scriptamat.2008.05.027
  • Han WZ , Zhang ZF , Wu SD , et al . Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Phil Mag. 2008;88:3011–3029.10.1080/14786430802438168
  • Ghaderi A , Barnett MR . Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 2011;59:7824–7839.10.1016/j.actamat.2011.09.018
  • Zhu YT , Liao XZ , Wu XL , et al . Grain size effect on deformation twinning and detwinning. J Mater Sci. 2013;48:4467–4475.10.1007/s10853-013-7140-0
  • Min XH , Emura S , Sekido N , et al . Effects of Fe addition on tensile deformation mode and crecive corrosion resistance in Ti-15Mo alloy. Mater Sci Eng A. 2010;527:2693–2701.10.1016/j.msea.2009.12.050
  • Wang CH , Yang CD , Liu M , et al . Martensitic microstructures and mechanical properties of as-quenched mestastable β-type Ti-Mo alloys. J Mater Sci. 2016;51:6886–6896.10.1007/s10853-016-9976-6
  • Matsumoto H , Watanabe S , Hanada S . Microstructure and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloys Comp. 2007;439:146–155.10.1016/j.jallcom.2006.08.267
  • Kim HY , Sasaki T , Okutsu K , et al . Texture and shape memory behavior of Ti-22Nb-6Ta alloy. Acta Mater. 2006;54:423–433.10.1016/j.actamat.2005.09.014
  • Xu YF , Yi DQ , Liu HQ , et al . Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications. Mater Sci Eng A. 2012;547:64–71.10.1016/j.msea.2012.03.081
  • Barkia B , Doquet V , Couzinié JP , et al . In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater Sci Eng A. 2015;636:91–102.10.1016/j.msea.2015.03.044
  • Inoue H , Furukushima S , Inazaku N . Transformation textures in Ti-15V-3Cr-3Sn-3Al alloy sheets. Mater Trans JIM. 1992;33:129–137.10.2320/matertrans1989.33.129
  • Kumar MA , Kanjarla AK , Niezgoda SR , et al . Numerical study of the stress state of a deformation twin in magnesium. Acta Mater. 2015;84:349–358.10.1016/j.actamat.2014.10.048
  • Barnett MR , Ghaderi A , Fonseca JQ , et al . Influence of orientation on twin nucleation and growth at low strains in a magnesium alloy. Acta Mater. 2014;80:380–391.10.1016/j.actamat.2014.07.013
  • Kumar MA , Beyerlein IJ , Tome CN . Effect of local stress fields on twin characteristics in HCP metals. Acta Mater. 2016;116:143–154.10.1016/j.actamat.2016.06.042
  • Bieler TR , Eisenlohr P , Zhang C , et al . Grain boundaries and interfaces in slip transfer. Current opinion in solid state. Mater. Sci. 2014;18:221–226.
  • Gutierrez-Urrutia I , Raabe D . Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011;59:6449–6462.10.1016/j.actamat.2011.07.009
  • Gutierrez-Urrutia I , Raabe D . Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. Acta Mater. 2012;60:5791–5802.
  • DeHoff RT , Rhines FN . Quantitative Microscopy. New York (NY): McGraw-Hill; 1968.
  • Hanada S , Izumi O . Deformation of metastable beta Ti-15Mo-5Zr alloy single crystals. Metall Trans A. 1980;11A:1447–1452.10.1007/BF02653501
  • Beyerlein IJ , Tomé CN . A probabilistic twin nucleation model for HCP polycrystalline metals. Proc R Soc A. 2010;466:2517–2544.10.1098/rspa.2009.0661
  • Beyerlein IJ , McCabe RJ , Tome CN . Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study. J Mech Phys Solids. 2011;59:988–1003.10.1016/j.jmps.2011.02.007
  • Capolungo L , Beyerlein IJ , Tomé CN . Slip-assisted twin growth in hexagonal close-packed metals. Scripta Mater. 2009;60:32–35.10.1016/j.scriptamat.2008.08.044
  • Khosravani A , Fullwood DT , Adams BL , et al . Nucleation and propagation of 10–12 twins in AZ31 magnesium alloy. Acta Mater. 2015;100:202–214.10.1016/j.actamat.2015.08.024
  • Jonas J , Mu S , Al-Samman T , et al . The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 2011;59:2046–2056.10.1016/j.actamat.2010.12.005
  • Kumar MA , Beyerlein IJ , Tomé CN . Grain size constraints on twin expansion in hexagonal close packed crystals. J Appl Phys. 2016;120:155105.10.1063/1.4965719
  • Kumar MA , Beyerlein IJ , McCabe RJ , et al . Grain neighbour effects on twin transmission in hexagonal close-packed materials. Nature Comm. 2016;7:13826.10.1038/ncomms13826