2,179
Views
25
CrossRef citations to date
0
Altmetric
Focus on Energy Harvesting - Science, Technology, Application and Metrology

Organic π-type thermoelectric module supported by photolithographic mold: a working hypothesis of sticky thermoelectric materials

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 517-525 | Received 18 Jan 2018, Accepted 07 Jun 2018, Published online: 17 Jul 2018

References

  • Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321:1457–1461.
  • Toshima N. Recent progress of organic and hybrid thermoelectric materials. Synth Met. 2017;225:3–21.
  • Mori T . Priya, S. Materials for energy harvesting: at the forefront of a new wave. MRS Bull. 2018;43:176–180.
  • Shindo T , Nakatani Y , Oishi T . Thermoelectric generating system for effective use of unutilized energy (in Japanese). Toshiba Rev. 2008;63:7–10.
  • Vining CB . An inconvenient truth about thermoelectrics. Nat Mater. 2009;8:83–85.
  • Bahk J-H , Fang H , Yazawa K , et al. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C. 2015;3:10362.
  • Wei Q , Uehara C , Mukaida M , et al. Measurement of in-plane thermal conductivity in polymer films. AIP Advances. 2016;6:045315.
  • Yan H , Toshima N . Thermoelectric properties of alternatively layered films of polyaniline and (±)-10-camphorsulfonic acid-doped polyaniline. Chem Lett. 1999;28:1217–1218.
  • Kim G-H , Shao L , Zhang K , et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013;12:719–723.
  • Beekman M , Morelli DT , Nolas GS . Better thermoelectrics through glass-like crystals. Nat Mater. 2015;14:1182–1185.
  • Mori T . Novel principles and nanostructuring methods for enhanced thermoelectrics. Small. 2017;13:1702013.
  • Nonoguchi Y , Ohashi K , Kanazawa R , et al. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep. 2013;3:3344.
  • Wan C , Gu X , Dang F , et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2 . Nat Mater. 2015;14:622–627.
  • Wan C , Tian R , Kondou M , et al. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat Commun. 2017;8:1024.
  • Wüsten J , Potje-Kamloth K . Organic thermogenerators for energy autarkic systems on flexible substrates. J Phys D Appl Phys. 2008;41:135113.
  • Bubnova O , Khan ZU , Malti A , et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4- ethylenedioxythiophen). Nat Mater. 2011;10:429–433.
  • Van Hal PA , Smits ECP , Geuns TCT , et al. Upscaling, integration and electrical characterization of molecular junctions. Nat Nanotech. 2008;3:749–754.
  • Kee S , Kim N , Kim BS , et al. Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv Mater. 2016;28:8625–8631.
  • Naka K , Uemura T , Chujo Y . Linearly extended π-conjugated dithiafulvene polymer formed soluble charge-transfer complex with 7,7,8,8-tetracyanoquinodimethane. Poly J. 2001;32:435–439.
  • White MS , Kaltenbrunner M , Głowacki ED , et al. Ultrathin, highly flexible, and stretch-compatible PLEDs. Nat Photonics. 2013;7:811–816.
  • Kaltenbrunner M , White MS , Głowacki ED , et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun. 2012;3:770.
  • Chang EP . Viscoelastic windows of pressure-sensitive adhesives. J Adhesion. 1991;34:189–200.