2,327
Views
3
CrossRef citations to date
0
Altmetric
Focus on Photovoltaic Science, Applications and Technology

A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells

, , , , , , , , & show all
Pages 599-612 | Received 14 Mar 2018, Accepted 21 Jun 2018, Published online: 23 Aug 2018

References

  • O’Regan BC , Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737–740.
  • Holliman PJ , Davies ML , Connell A , et al. Rapid, low temperature processing of dye sensitized solar cells. In: Kilner JA , Skinner SJ , Irvine SJC , et al., editors. Functional materials for energy applications. Cambridge: Woodhead Publishers; 2012.
  • Hagfeldt A , Boschloo G , Sun L , et al. Dye-sensitized solar cells. Chem Rev. 2010;110:6595–6663.
  • Snaith HJ . Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv Funct Mater. 2010;20:13–19.
  • Kalyanasundaram K , Grätzel M . Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev. 1998;177:347–414.
  • Kim HH , Park C , Choi W , et al. Low-temperature-fabricated ZnO, AZO, and SnO2 nanoparticle-based dye-sensitized solar cells. J Korean Phys Soc. 2014;65:1315–1319.
  • Connell A , Holliman PJ , Davies ML , et al. A study of dye anchoring points in half-squarylium dyes for dye-sensitized solar cells. J Mater Chem A. 2014;2(11):4055–4066.
  • Connell A , Holliman PJ , Jones EW , et al. Multiple linker half-squarylium dyes for dye-sensitized solar cells; are two linkers better than one? J Mater Chem A. 2015;3(6):2883–2894.
  • Furnell L , Holliman PJ , Connell A , et al. Digital imaging to simultaneously study device lifetimes of multiple dye-sensitized solar cells. Sustain Energy Fuels. 2017;1:362–370.
  • Martsinovich N , Jones DR , Troisi A . Electronic structure of TiO2 surfaces and effect of molecular adsorbates using different DFT implementations. J Phys Chem C. 2010;114:22659–22670.
  • Deskins A , Dupuis M . Electron transport via polaron hopping in bulk TiO2: A density functional theory characterization. Phys Rev B. 2007;75:195121.
  • Sánchez-de-Armas R , López JO , San-Miguel MA , et al. Real-time TD-DFT simulations in dye sensitized solar cells: the electronic absorption spectrum of alizarin supported on TiO2 nanoclusters. J Chem Theory Comput. 2010;6:2856–2865.
  • Pastore M , Mosconi E , De Angelis F , et al. Investigation of organic dyes for dye-sensitized solar cells: benchmark, strategies, and open issues. J Phys Chem. 2010;114:7205–7212.
  • Sundari CDD , Martoprawiro MA , Ivansyah AL . A DFT and TDDFT study of PCM effect on N3 dye absorption in ethanol solution. J Phys Conf Ser. 2016;812:0120681–0120686.
  • Labat F , Ciofini I , Hratchian HP , et al. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc. 2009;131:14290–14298.
  • Holliman PJ , Muslem DK , Jones EW , et al. Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells. J Mater Chem A. 2014;2:11134–11143.
  • Holliman PJ , Mohsen M , Connell A , et al. Ultra-fast co-sensitization and tri-sensitization of dye-sensitized solar cells with N719, SQ1 and triarylamine dyes. J Mater Chem. 2012;22(26):13318.
  • O’Regan BC , Durrant J . Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res. 2009;42:1799–1808.
  • Shluger AL , McKenna KP , Sushko PV , et al. Modelling of electron and hole trapping in oxides. Model Simul Mater Sci Eng. 2009;17:084004.
  • Nazeeruddin MK , Péchy P , Grätzel M . Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex. ChemComm. 1997;1:1705–1706.
  • Cao Y , Bai Y , Yu Q , et al. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio) thiophene conjugated bipyridine. J Phys Chem C. 2009;113:6290–6297.
  • Nazeeruddin MK , De Angelis F , Fantacci S , et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell tuthenium sensitizers. J Am Chem Soc. 2005;127(48):16835–16847.
  • Holliman PJ , Al-Salihi KJ , Connell A , et al. Development of selective, ultra-fast multiple co-sensitization to control dye loading in dye-sensitized solar cells. RSC Adv. 2014;4(5):2515–2522.
  • Bessho TY , Yum E , Guglielmi J , et al. New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc. 2009;131(16):5930–5934.
  • Im H , Kim S , Park C , et al. High performance organic photosensitizers for dye-sensitized solar cells. ChemComm. 2010;46(8):1335–1337.
  • Liang M , Chen J . Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev. 2013;42:3453–3488.
  • Mohammadi N , Mahon PJ , Wang F . Toward rational design of organic dye sensitized solar cells (DSSCs): an application to the TA-St-CA dye. J Mol Graph. 2013;40:64–71.
  • Hara K , Wang Z , Sato T , et al. Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B. 2005;109:15476–15482.
  • Pepe G , Cole JM , Waddell PG , et al. Molecular engineering of cyanine dyes to design a panchromatic response in co-sensitized dye-sensitized solar cells. Mol Syst Eng. 2016;1(1):86–98.
  • Ito S , Zakeeruddin SM , Humphry-Baker R , et al. High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater. 2006;18(9):1202–1205.
  • Wu Y , Marszalek M , Zakeeruddin SM , et al. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes. Energy Env Sci. 2012;5(8):8261.
  • McEwen JJ , Wallace KJ . Squaraine dyes in molecular recognition and self-assembly. ChemComm. 2009;0:6339–6351.
  • Tian M , Furuki M , Iwasa I , et al. Search for squaraine derivatives that can be sublimed without thermal decomposition. J Phys Chem B. 2002;106(17):4370–4376.
  • Lynch D . Comments on lynch. Pyrrolyl squaraines—fifty golden years. Metals. 2015, 5, 1349–1370. Metals. 2015;5(4):2370–2371.
  • Lu X , Feng Q , Lan T , et al. Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells. Chem Mater. 2012;24(16):3179–3187.
  • Calogero G , Bartolotta A , Di Marco G , et al. Vegetable-based dye-sensitized solar cells. Chem Soc Rev. 2015;44(10):3244–3294.
  • Connell A , Holliman PJ , Jones EW , et al. Surface interactions of half-squaraine dyes in dye-sensitized solar cells. Mater Res Innov. 2015;19(7):494–496.
  • Kakiage K , Aoyama Y , Yano T , et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. ChemComm. 2015;51(88):15894–15897.
  • Cao Y, Saygili Y, Ummadisingu A, Teuscher J, Luo J, Pellet N, Giordano F, Zakeeruddin SM, Moser J-E, Freitag M, Hagfeldt A, Grätzel M . 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat Comm. 2017;8(15390):1–8.
  • Matsui M , Mase H , Jin JY , et al. Application of semisquaric acids as sensitizers for zinc oxide solar cell. Dyes Pigments. 2006;70(1):48–53.
  • Shahzad N , Risplendi F , Pugliese D , et al. Comparison of hemi-squaraine sensitized TiO2 and ZnO photoanodes for DSSC applications. J Phys Chem C. 2013;117(44):22778–22783.
  • Cicero G , Musso G , Lamberti A , et al. Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells. Phys Chem Chem Phys. 2013;15(19):7198.
  • Nakazumi H , Natsukawa K , Nakai K , et al. Synthesis and structure of new cationic squarylium dyes. Angew Chem Int Ed. 1994;33(9):1001–1003.
  • Ajayaghosh A . Chemistry of squaraine-derived materials: near-IR dyes, low band gap systems, and cation sensors. Acc Chem Res. 2005;38(6):449–459.
  • Yum J , Walter P , Huber S , et al. Efficient near-IR sensitization of nanocrystalline TiO2 films by an assymetrical squaraine dye. J Am Chem Soc. 2007;129(34):10320–10321.
  • Chen KJ , Charaf-Eddin A , Selvam B , et al. Interplay between TiO2 surfaces and organic photochromes: A DFT study of adsorbed azobenzenes and diarylethenes. J Phys Chem C. 2015;119(7):3684–3696.
  • De Angelis F . Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Acc Chem Res. 2014;47(11):3349–3360.
  • Yang C , Tang A , Teng F , et al. Determination of HOMO levels of organic dyes in solid-state electrochemistry. J Solid State Electrochem. 2015;19(3):883–890.
  • Adineh M , Tahay P , Ameri M , et al. Fabrication and analysis of dye-sensitized solar cells (DSSCs) using porphyrin dyes with catechol anchoring groups. RSC Adv. 2016;6(18):14512–14521.
  • Jacquemin D , Preat J , Wathelet V , et al. Thioindigo dyes: highly accurate visible spectra with TD-DFT. J Am Chem Soc. 2006;128:2072–2083.
  • Sánchez-de-Armas R , San Miguel MA , Oviedo J , et al. Coumarin derivatives for dye sensitized solar cells: a TD-DFT study. Phys Chem Chem Phys. 2012;14:225–233.
  • Le Guennic B , Jacquemin D . Taking Up the Cyanine Challenge with Quantum Tools. Acc Chem Res. 2015;48:530–537.
  • Zhang L , Cole JM . Anchoring groups for dye-sensitized solar cells. ACS Appl Mater Interfaces. 2015;7(6):3427–3455.
  • McNamara WR , Snoeberger III RC , Li G , et al. Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energy Env Sci. 2009;2(11):1173.
  • Brewster TP , Konezny SJ , Sheehan SW , et al. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells. Inorg Chem. 2013;52(11):6752–6764.
  • Altobello S , Bignozzi CA , Caramori S , et al. Sensitization of TiO2 with ruthenium complexes containing boronic acid functions. J Photochem Photobiol A. 2004;166(1–3):91–98.
  • Wu G , Kong F , Zhang Y , et al. Multiple-anchoring triphenylamine dyes for dye-sensitized solar cell application. J Phys Chem C. 2014;118(17):8756–8765.
  • Pastore M , De Angelis F . Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. Phys Chem Chem Phys. 2012;14:920–928.
  • Labat F , Adamo C . Bi-isonicotinic acid on anatase (101): insights from theory. J Phys Chem C. 2007;111:15034–15042.
  • Pastore M , De Angelis F . Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS NANO. 2010;4:556–562.
  • Chen P , Yum JH , De Angelis F , et al. High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett. 2009;9:2487–2492.
  • Tian H , Yang X , Chen R , et al. Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J Phys Chem C. 2008;112:11023–11033.
  • Vittadini A , Selloni A , Rotzinger FP , et al. Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B. 2000;104:1300–1306.
  • Nunzi F , De Angelis F . DFT investigations of formic acid adsorption on single-wall TiO2 nanotubes: effect of the surface curvature. J Phys Chem C. 2011;115:2179–2186.
  • Clifford JN , Palomares E , Nazeeruddin MK , et al. Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO films. J Am Chem Soc. 2004;126:5670–5671.
  • Ootani Y , Sodeyama K , Han L , et al. First-principles study on the cosensitization effects of Ru and squaraine dyes on a TiO2 surface. Surf Sci. 2016;649:66–71.
  • Holliman PJ , Davies ML , Connell A , et al. Ultra-fast dye sensitisation and co-sensitisation for dye sensitized solar cells. ChemComm. 2010;46(38):7256.
  • Qin C , Numata Y , Zhang S , et al. A near-infrared cis-configured squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Adv Funct Mater. 2013;23:3782–3789.
  • Kusama H , Funaki T , Koumura N , et al. Intermolecular interactions between a Ru complex and organic dyes in cosensitized solar cells: a computational study. Phys Chem Chem Phys. 2014;16:16166–16175.
  • Pastore M , De Angelis F . Intermolecular interactions in dye-sensitized solar cells: a computational modeling perspective. J Phys Chem Lett. 2013;4:956–974.
  • Pastore M , De Angelis F . First-principles computational modeling of fluorescence resonance energy transfer in co-sensitized dye solar cells. J Phys Chem Lett. 2012;3:2146–2153.
  • Carnie MJ , Bryant D , Watson T , et al. Photocatalytic oxidation of triiodide in UVA-exposed dye-sensitized solar cells. Int J Photoenergy. 2012;5245901:1–8.
  • Machesky ML , Wesolowski DJ , Palmer DA , et al. On the temperature dependence of intrinsic surface protonation of equilibrium constants: an extension of the revised MUSIC model. J Colloid Interface Sci. 2001;239:314–327.
  • Předota M , Bandura AV , Cummings PT , et al. Electric double layer at the rutile (110) surface 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B. 2004;108:12049–12060.
  • Abuabara SG , Gascon JA , Suet-Yee Leung C , et al. Force field parameters for large-scale computational modelling of sensitized TiO2 surfaces. Phys Chem Interfaces Nanomater. 2006;6325:63250R1–12.
  • Car R , Parrinello M . Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett. 1985;55:2471–2474.
  • Teuscher J , Marchioro A , Andrès J , et al. Kinetics of the regeneration by iodide of dye sensitizers adsorbed on mesoporous Titania. J Phys Chem C. 2014;118:17108–17115.
  • Planells M , Pellejà L , Clifford JN , et al. Energy levels, charge injection, charge recombination and dye regeneration dynamics for donor–acceptor π-conjugated organic dyes in mesoscopic TiO2 sensitized solar cells. Energy Env Sci. 2011;4:1820.
  • O’Regan BC , Walley K , Juozapavicius M , et al. Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J Am Chem Soc. 2009;131:3541–3548.
  • Duncan WR , Prezhdo OV . Theorectical studies of photoinduced electron transfer in dye-sensitized TiO2 . Ann Rev Phys Chem. 2007;58:143–184.
  • Le Bahers T , Pauporté T , Lainé PP , et al. Modeling Dye-Sensitized Solar Cells: from Theory to Experiment. J Phys Chem Lett. 2013;4:1044–1050.
  • Jones DR , Troisi A . A method to rapidly predict the charge injection rate in dye sensitized solar cells. Phys Chem Chem Phys. 2010;12:4625–4634.
  • Ullah H , Bibi S , Tahir AA , et al. Donor-acceptor polymer for the design of all-solid-state dye-sensitized solar cells. J Alloy Compd. 2017;696:914–922.
  • Cole JM , Low KS , Ozoe H , et al. Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Phys Chem Chem Phys. 2014;16:26684–26690.
  • Galoppini E . Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord Chem Rev. 2004;248:1283–1297.