36,604
Views
346
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Structure of graphene and its disorders: a review

, , &
Pages 613-648 | Received 02 Feb 2018, Accepted 26 Jun 2018, Published online: 29 Aug 2018

References

  • Wallace PR. The band theory of graphite. Phys Rev. 1947;71:622–634.
  • Fradkin E. Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. Phys Rev B. 1986;33:3263–3268.
  • Mermin ND. Crystalline order in two dimensions. Phys Rev. 1968;176:250–254.
  • Land TA, Michely T, Behm RJ, et al. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci. 1992;264:261–270.
  • Ohashi Y, Koizumi T, Yoshikawa T, et al. Size effect in the in-plane electrical resistivity of very thin graphite crystals. Tanso. 1997;1997:235–238.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183.
  • Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci U S A. 2005;102:10451–10453.
  • Meyer JC, Geim AK, Katsnelson MI, et al. The structure of suspended graphene sheets. Nature. 2007;446:60–63.
  • Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438:197–200.
  • Zhang Y, Tan Y-W, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.
  • Blake P, Hill EW, Castro Neto AH, et al. Making graphene visible. Appl Phys Lett. 2007;91:063124.
  • Casiraghi C, Hartschuh A, Lidorikis E, et al. Rayleigh imaging of graphene and graphene layers. Nano Lett. 2007;7:2711–2717.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907.
  • Morozov SV, Novoselov KS, Katsnelson MI, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008;100:016602.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710.
  • Geim AK. Graphene: status and prospects. Science. 2009;324:1530–1534.
  • Yoo EJ, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008;8:2277–2282.
  • Stoller MD, Park S, Yanwu Z, et al. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–3502.
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.
  • Sui D, Huang Y, Huang L, et al. Flexible and transparent electrothermal film heaters based on graphene materials. Small. 2011;7:3186–3192.
  • Sun J, Chen Y, Priydarshi MK, et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015;15:5846–5854.
  • Yao X, Hu Y, Grinthal A, et al. Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater. 2013;12:529–534.
  • Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008;8:323–327.
  • Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics. 2010;4:611–622.
  • Qiu B, Xing M, Zhang J. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem Soc Rev. 2018;47:2165–2216.
  • Varghese SS, Lonkar S, Singh KK, et al. Recent advances in graphene based gas sensors. Sensors Actuators, B Chem. 2015;218:160–183.
  • Dey A, Bajpai OP, Sikder AK, et al. Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew Sustain Energy Rev. 2016;53:653–671.
  • Prasai D, Tuberquia JC, Harl RR, et al. Graphene: corrosion-inhibiting coating. ACS Nano. 2012;6:1102–1108.
  • He P, Li L, Yu J, et al. Graphene-coated Si mold for precision glass optics molding. Opt Lett. 2013;38:2625–2628.
  • Xie P, He P, Yen YC, et al. Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers. Surf Coatings Technol. 2014;258:174–180.
  • Zhang L, Zhou W, Yi AY. Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics. Opt Lett. 2017;42:1369–1372.
  • Xie P, Yang H, Zhao Y, et al. Carbide-bonded graphene coating of mold insert for rapid thermal cycling in injection molding. Appl Therm Eng. 2017;122:19–26.
  • Yang G, Li L, Lee WB, et al. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing. Appl Surf Sci. 2018;435:130–140.
  • Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105:176–189.
  • Shi X, Zheng S, Wu ZS, et al. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J Energy Chem. 2018;27:25–42.
  • Solís-Fernández P, Bissett M, Ago H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev. 2017;46:4572–4613.
  • Hernaez M, Zamarreño CR, Melendi-Espina S, et al. Optical fibre sensors using graphene-based materials: a review. Sensors. 2017;17:155.
  • Yang K, Wang J, Chen X, et al. Application of graphene-based materials in water purification: from nanoscale to specific devices. Environ Sci Nano. 2018;5:1264–1297.
  • Perreault F, Fonseca De Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev. 2015;44:5861–5896.
  • Gadipelli S, Guo ZX. Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci. 2015;69:1–60.
  • Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett. 2012;12:3602–3608.
  • Li X, Zhu H, Wang K, et al. Graphene-on-silicon schottky junction solar cells. Adv Mater. 2010;22:2743–2748.
  • Sato S, Kakushima K, Ahmet P, et al. Structural advantages of rectangular-like channel cross-section on electrical characteristics of silicon nanowire field-effect transistors. Microelectron. Reliab. 2011;51:879–884.
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22:3906–3924.
  • Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev. 2010;110:132–145.
  • Tian W, Li W, Yu W, et al. A review on lattice defects in graphene: types generation effects and regulation. Micromachines. 2017;8:163.
  • Liu L, Qing M, Wang Y, et al. Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J Mater Sci Technol. 2015;31:599–606.
  • Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano. 2011;5:26–41.
  • McCann E. Electronic properties of monolayer and bilayer graphene. Nanosci Technol. 2012;57:237–275.
  • Reich S, Maultzsch J, Thomsen C, et al. Tight-binding description of graphene. Phys Rev B Condens Matter Mater Phys. 2002;66:354121–354125.
  • Saito R, Dresselhaus G, Dresselhaus MS. Physical properties of carbon nanotubes.Physical properties of carbon nanotubes. 1998.London: Imperial College Press.
  • Slonczewski JC, Weiss PR. Band structure of graphite. Phys Rev. 1958;109:272–279.
  • Semenoff GW. Condensed-Matter simulation of a three-Dimensional anomaly. Phys Rev Lett. 1984;53:2449–2452.
  • Haldane FDM. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988;61:2015–2018.
  • Mak KF, Lui CH, Shan J, et al. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett. 2009;102:256405.
  • Tang K, Qin R, Zhou J, et al. Electric-field-induced energy gap in few-layer graphene. J Phys Chem C. 2011;115:9458–9464.
  • Dalosto SD, Levine ZH. Controlling the band gap in zigzag graphene nanoribbons with an electric field induced by a polar molecule. J Phys Chem C. 2008;112:8196–8199.
  • Yuan H, Chang S, Bargatin I, et al. Engineering ultra-low work function of graphene. Nano Lett. 2015;15:6475–6480.
  • Gmitra M, Konschuh S, Ertler C, et al. Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys Rev B Condens Matter Mater Phys. 2009;80:235431.
  • Wang YY, Ni ZH, Yu T, et al. Raman studies of monolayer graphene: the substrate effect. J Phys Chem C. 2008;112:10637–10640.
  • Wang QH, Jin Z, Kim KK, et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem. 2012;4:724–732.
  • Gui G, Li J, Zhong J. Band structure engineering of graphene by strain: first-principles calculations. Phys Rev B Condens Matter Mater Phys. 2008;78:075435.
  • Si C, Sun Z, Liu F. Strain engineering of graphene: a review. Nanoscale. 2016;8:3207–3217.
  • Chang C-K, Kataria S, Kuo -C-C, et al. Band gap engineering of chemical vapor deposited graphene by in situ BN doping. ACS Nano. 2013;7:1333–1341.
  • Haberer D, Vyalikh DV, Taioli S, et al. Tunable band gap in hydrogenated quasi-free-standing graphene. Nano Lett. 2010;10:3360–3366.
  • Zhan D, Yan J, Lai L, et al. Engineering the electronic structure of graphene. Adv Mater. 2012;24:4055–4069.
  • Sharma R, Baik JH, Perera CJ, et al. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010;10:398–405.
  • Klusek Z, Kozlowski W, Waqar Z, et al. Local electronic edge states of graphene layer deposited on Ir(111) surface studied by STM/CITS. Appl Surf Sci. 2005;252:1221–1227.
  • Bellunato A, Arjmandi Tash H, Cesa Y, et al. Chemistry at the Edge of Graphene. ChemPhysChem. 2016;17:785–801.
  • Neubeck S, You YM, Ni ZH, et al. Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Appl Phys Lett. 2010;97:053110.
  • Cong C, Yu T, Wang H. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano. 2010;4:3175–3180.
  • Xu YN, Zhan D, Liu L, et al. Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy. ACS Nano. 2011;5:147–152.
  • Rutter GM, Guisinger NP, Crain JN, et al. Edge structure of epitaxial graphene islands. Phys Rev B. 2010;81:245408.
  • N’Diaye AT, Engler M, Busse C, et al. Growth of graphene on Ir(111). New J Phys. 2009;11:023006.
  • Eom D, Prezzi D, Rim KT, et al. Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett. 2009;9:2844–2848.
  • Yu Q, Jauregui LA, Wu W, et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater. 2011;10:443–449.
  • Jia X, Hofmann M, Meunier V, et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science. 2009;323:1701–1705.
  • Ritter KA, Lyding JW. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater. 2009;8:235–242.
  • Barone V, Hod O, Scuseria GE. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006;6:2748–2754.
  • Sen D, Novoselov KS, Reis PM, et al. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. Small. 2010;6:1108–1116.
  • Nemes-Incze P, Magda G, Kamarás K, et al. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res. 2010;3:110–116.
  • Guo Y, Guo W. Favorable zigzag configuration at etched graphene edges. J Phys Chem C. 2011;115:20546–20549.
  • Girit ÇÖ, Meyer JC, Erni R, et al. Graphene at the edge: stability and dynamics. Science. 2009;323:1705–1708.
  • Krauss B, Nemes-Incze P, Skakalova V, et al. Raman scattering at pure graphene zigzag edges. Nano Lett. 2010;10:4544–4548.
  • Hyun C, Yun J, Cho WJ, et al. Graphene edges and beyond: temperature-driven structures and electromagnetic properties. ACS Nano. 2015;9:4669–4674.
  • Ritter K, Lyding J. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater. 2009;8:235–242.
  • Phark SH, Borme J, Vanegas AL, et al. Atomic structure and spectroscopy of graphene edges on Ir(111). Phys Rev B Condens Matter Mater Phys. 2012;86:045442.
  • Prezzi D, Eom D, Rim KT, et al. Edge structures for nanoscale graphene Islands on Co(0001) surfaces. ACS Nano. 2014;8:5765–5773.
  • Yamamoto M, Obata S, Saiki K. Structure and properties of chemically prepared nanographene islands characterized by scanning tunneling microscopy. Surf Interface Anal. 2010;42:1637–1641.
  • Yazyev OV, Louie SG. Electronic transport in polycrystalline graphene. Nat Mater. 2010;9:806–809.
  • Grantab R, Shenoy VB, Ruoff RS. Anomalous strength characteristics of tilt grain boundaries in graphene. Science. 2010;330:946–948.
  • Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57.
  • Malard LM, Pimenta MA, Dresselhaus G, et al. Raman spectroscopy in graphene. Phys Rep. 2009;473:51–87.
  • Sprinkle M, Ruan M, Hu Y, et al. Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol. 2010;5:727–731.
  • Ago H, Ito Y, Tsuji M, et al. Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale. 2012;4:5178.
  • Hayashi K, Sato S, Ikeda M, et al. Selective graphene formation on copper twin crystals. J Am Chem Soc. 2012;134:12492–12498.
  • Ago H, Tanaka I, Ogawa Y, et al. Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films. ACS Nano. 2013;7:10825–10833.
  • Jacobberger RM, Kiraly B, Fortin-Deschenes M, et al. Direct oriented growth of armchair graphene nanoribbons on germanium. Nat Commun. 2015;6:8006.
  • Kawai S, Saito S, Osumi S, et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat Commun. 2015;6:8098.
  • Han MY, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett. 2007;98:206805.
  • Kan EJ, Li Z, Yang J, et al. Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc. 2008;130:4224–4225.
  • Wang Z, Li Q, Zheng H, et al. Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study. Phys Rev B. 2007;75:113406.
  • He HY, Zhang Y, Pan BC. Tuning electronic structure of graphene via tailoring structure: theoretical study. J Appl Phys. 2010;107:114322.
  • Raza H, Kan EC. Armchair graphene nanoribbons: electronic structure and electric-field modulation. Phys Rev B Condens Matter Mater Phys. 2008;77:245434.
  • Dutta S, Pati SK. Novel properties of graphene nanoribbons: a review. J Mater Chem. 2010;20:8207.
  • Yazyev OV. A guide to the design of electronic properties of graphene nanoribbons. Acc Chem Res. 2013;46:2319–2328.
  • Bianco A, Cheng H-M, Enoki T, et al. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon N Y. 2013;65:1–6.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907.
  • Terrones M, Botello-Méndez AR, Campos-Delgado J, et al. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today. 2010;5:351–372.
  • McCann E, Fal’ko VI. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett. 2006;96:086805.
  • Novoselov KS, McCann E, Morozov SV, et al. Unconventional quantum hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys. 2006;2:177–180.
  • Kanayama K, Nagashio K. Gap state analysis in electric-field-induced band gap for bilayer graphene. Sci Rep. 2015;5:15789.
  • Castro EV, Novoselov KS, Morozov SV, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett. 2007;99:216802.
  • Hao J, Huang C, Wu H, et al. A promising way to open an energy gap in bilayer graphene. Nanoscale. 2015;7:17096–17101.
  • Lee SY, Duong DL, Vu QA, et al. Chemically modulated band gap in bilayer graphene memory transistors with high on/off ratio. ACS Nano. 2015;9:9034–9042.
  • Duong DL, Lee SM, Chae SH, et al. Band-gap engineering in chemically conjugated bilayer graphene: ab initio calculations. Phys Rev B Condens Matter Mater Phys. 2012;85:205413.
  • Zhang Y, Tang TT, Girit C, et al. Direct observation of a widely tunable band gap in bilayer graphene. Nature. 2009;459:820–823.
  • Craciun MF, Russo S, Yamamoto M, et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol. 2009;4:383–388.
  • Koshino M, Ando T. Orbital diamagnetism in multilayer graphenes: systematic study with the effective mass approximation. Phys Rev B Condens Matter Mater Phys. 2007;76:085425.
  • Partoens B, Peeters FM. Normal and dirac fermions in graphene multilayers: tight-binding description of the electronic structure. Phys Rev B Condens Matter Mater Phys. 2007;75:193402.
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol. 2010;5:722–726.
  • Ghosh S, Bao W, Nika DL, et al. Dimensional crossover of thermal transport in few-layer graphene. Nat Mater. 2010;9:555–558.
  • Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569.
  • Neek-Amal M, Peeters FM. Nanoindentation of a circular sheet of bilayer graphene. Phys Rev B Condens Matter Mater Phys. 2010;81:235421.
  • Zhang YY, Wang CM, Cheng Y, et al. Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon N Y. 2011;49:4511–4517.
  • Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science. 2008;320:1308.
  • Bunch JS, Verbridge SS, Alden JS, et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008;8:2458–2462.
  • Zhang YY, Gu YT. Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput Mater Sci. 2013;71:197–200.
  • Lee C, Wei X, Li Q, et al. Elastic and frictional properties of graphene. Phys Status Solidi. 2009;246:2562–2567.
  • Fang X-Y, Yu -X-X, Zheng H-M, et al. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys Lett A. 2015;379:2245–2251.
  • Nirmalraj PN, Lutz T, Kumar S, et al. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 2011;11:16–22.
  • Rouhi N, Wang YY, Burke PJ. Ultrahigh conductivity of large area suspended few layer graphene films. Appl Phys Lett. 2012;101:263101.
  • Poot M, Van Der Zant HSJ. Nanomechanical properties of few-layer graphene membranes. Appl Phys Lett. 2008;92: 063111.
  • Nika DL, Yan Z, Balandin AA. Thermal properties of graphene and few-layer graphene: applications in electronics, IET Circuits. Devices Syst. 2015;9:4–12.
  • Yazyev OV, Chen YP. Polycrystalline graphene and other two-dimensional materials. Nat Nanotechnol. 2014;9:755–767.
  • Russo S, Craciun MF, Khodkov T, et al. Electronic transport properties of few-layer graphene materials. Graphene Synth Charact Prop Appl. 2011;141–160.Rijeka:InTech.
  • McCann E, Koshino M. The electronic properties of bilayer graphene. Rep Prog. 2013;76:056503.
  • Ferrari AC, Meyer JC, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401.
  • Hao Y, Wang Y, Wang L, et al. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small. 2010;6:195–200.
  • Hiura H, Miyazaki H, Tsukagoshi K. Determination of the number of graphene layers: discrete distribution of the secondary electron intensity stemming from individual graphene layers. Appl Phys Express. 2010;3:095101.
  • Xu M, Fujita D, Gao J, et al. Auger electron spectroscopy: a rational method for determining thickness of graphene films. ACS Nano. 2010;4:2937–2945.
  • Zhang Y, Pan C. Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater. 2012;24:1–5.
  • Gaskell PE, Skulason HS, Rodenchuk C, et al. Counting graphene layers on glass via optical reflection microscopy. Appl Phys Lett. 2009;94:143101.
  • Cheon S, Kihm KD, Park JS, et al. How to optically count graphene layers. Opt Lett. 2012;37:3765–3767.
  • Jussila H, Yang H, Granqvist N, et al. Surface plasmon resonance for characterization of large-area atomic-layer graphene film. Optica. 2016;3:151.
  • Lin Z, Ye X, Han J, et al. Precise control of the number of layers of graphene by picosecond laser thinning. Sci Rep. 2015;5:11662.
  • Wu ZS, Ren W, Gao L, et al. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon N Y. 2009;47:493–499.
  • Mak KF, Shan J, Heinz TF. Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett. 2010;104:176404.
  • Norimatsu W, Kusunoki M. Selective formation of ABC-stacked graphene layers on SiC(0001). Phys Rev B Condens Matter Mater Phys. 2010;81:161410(R).
  • Koshino M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B Condens Matter Mater Phys. 2010;81: 125304.
  • Avetisyan AA, Partoens B, Peeters FM. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys Rev B Condens Matter Mater Phys. 2010;81:115432.
  • Koshino M, McCann E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys Rev B Condens Matter Mater Phys. 2009;79:125443.
  • McCann E, Koshino M. Spin-orbit coupling and broken spin degeneracy in multilayer graphene. Phys Rev B Condens Matter Mater Phys. 2010;81:241409(R).
  • Alden JS, Tsen AW, Huang PY, et al. Strain solitons and topological defects in bilayer graphene. Proc Natl Acad Sci. 2013;110:11256–11260.
  • Tabert CJ, Nicol EJ. Dynamical conductivity of AA-stacked bilayer graphene. Phys Rev B Condens Matter Mater Phys. 2012;86: 075439.
  • Nicol EJ, Carbotte JP. Optical conductivity of bilayer graphene with and without an asymmetry gap. Phys Rev B Condens Matter Mater Phys. 2008;77:155409.
  • Park C, Ryou J, Hong S, et al. Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field. Phys Rev Lett. 2015;115:015502.
  • McCann E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B. 2006;74:161403.
  • Oostinga JB, Heersche HB, Liu X, et al. Gate-induced insulating state in bilayer graphene devices. Nat Mater. 2008;7:151–157.
  • Lin J, Fang W, Zhou W, et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 2013;13:3262–3268.
  • Kim KS, Walter AL, Moreschini L, et al. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat Mater. 2013;12:887–892.
  • Liu Z, Suenaga K, Harris PJF, et al. Open and closed edges of graphene layers. Phys Rev Lett. 2009;102:015501.
  • Xu Y, Li X, Dong J. Infrared and Raman spectra of AA-stacking bilayer graphene. Nanotechnology. 2010;21:065711.
  • Rozhkov AV, Sboychakov AO, Rakhmanov AL, et al. Electronic properties of graphene-based bilayer systems. Phys Rep. 2016;648:1–104.
  • Li ZQ, Henriksen EA, Jiang Z, et al. Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys Rev Lett. 2009;102:037403.
  • Zhang LM, Li ZQ, Basov DN, et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys Rev B Condens Matter Mater Phys. 2008;78:235408.
  • Aoki M, Amawashi H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007;142:123–127.
  • Guinea F, Castro Neto AH, Peres NMR. Electronic states and Landau levels in graphene stacks. Phys Rev B Condens Matter Mater Phys. 2006;73:245426.
  • Avetisyan AA, Partoens B, Peeters FM. Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates. Phys Rev B Condens Matter Mater Phys. 2009;80:195401.
  • Chang CP, Wang J, Lu CL, et al. Optical properties of simple hexagonal and rhombohedral few-layer graphenes in an electric field. J Appl Phys. 2008;103:103109.
  • Wang ZJ, Dong J, Cui Y, et al. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat Commun. 2016;7: 13256.
  • Lui CH, Li Z, Chen Z, et al. Imaging stacking order in few-layer graphene. Nano Lett. 2011;11:164–169.
  • Ping J, Fuhrer MS. Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 2012;12:4635–4641.
  • Yan C, Wang J, Kang W, et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater. 2014;26:2022–2027.
  • Li D, Müller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101–105.
  • Huang W, Ouyang X, Lee LJ. High-performance nanopapers based on benzenesulfonic functionalized graphenes. ACS Nano. 2012;6:10178–10185.
  • Khrapach I, Withers F, Bointon TH, et al. Novel highly conductive and transparent graphene-based conductors. Adv Mater. 2012;24:2844–2849.
  • Morin FJ, Maita JP. Electrical properties of silicon containing arsenic and boron. Phys Rev. 1954;96:28–35.
  • Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater. 2012;24:1856–1861.
  • Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano. 2011;5:1321–1327.
  • Born M, Huang K. Dynamic theory of crystal lattice.Dynamic theory of crystal lattice Oxford:Clarendon Press. 1954.
  • Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett. 1966;17:1133–1136.
  • Venables JA, Spiller GDT, Hanbucken M. Nucleation and growth of thin films. Rep Prog. 1984;47:399–459.
  • Zinke-Allmang M, Feldman LC, Grabow MH. Clustering on surfaces. Surf Sci Rep. 1992;16:377–463.
  • Evans JW, Thiel PA, Bartelt MC. Morphological evolution during epitaxial thin film growth: formation of 2D islands and 3D mounds. Surf Sci Rep. 2006;61:1–128.
  • Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. Nat Mater. 2007;6:858–861.
  • Xu P, Neek-Amal M, Barber SD, et al. Unusual ultra-low-frequency fluctuations in freestanding graphene. Nat Commun. 2014;5:3720.
  • Shenoy VB, Reddy CD, Ramasubramaniam A, et al. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys Rev Lett. 2008;101:245501.
  • Carlsson JM. Graphene: buckle or break. Nat Mater. 2007;6:801–802.
  • Deng S, Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today. 2016;19:197–212.
  • Xu K, Cao P, Heath JR. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009;9:4446–4451.
  • Liu N, Pan Z, Fu L, et al. The origin of wrinkles on transferred graphene. Nano Res. 2011;4:996–1004.
  • Zhu WJ, Low T, Perebeinos V, et al. Structure and Electronic Transport in Graphene Wrinkles. Nano Lett. 2012;12:3431–3436.
  • Chae SJ, Güneş F, Kim KK, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater. 2009;21:2328–2333.
  • Cerda E, Mahadevan L. Geometry and physics of wrinkling. Phys Rev Lett. 2003;90:4.
  • Bao W, Miao F, Chen Z, et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol. 2009;4:562–566.
  • Zakharchenko KV, Katsnelson MI, Fasolino A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys Rev Lett. 2009;102:046808.
  • Scarpa F, Adhikari S, Srikantha Phani A. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology. 2009;20:065709.
  • Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater. 2013;12:321–325.
  • Luo J, Jang HD, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano. 2011;5:8943–8949.
  • Ma X, Zachariah MR, Zangmeister CD. Crumpled nanopaper from graphene oxide. Nano Lett. 2012;12:486–489.
  • Vliegenthart GA, Gompper G. Forced crumpling of self-avoiding elastic sheets. Nat Mater. 2006;5:216–221.
  • Read WT, Shockley W. Dislocation models of crystal grain boundaries. Phys Rev. 1950;78:275–289.
  • Hirth JP, Lothe J, Mura T. Theory of Dislocations (2nd ed.). J Appl Mech. 1983;50:476.
  • Yazyev OV, Louie SG. Topological defects in graphene: dislocations and grain boundaries. Phys Rev B Condens Matter Mater Phys. 2010;81:195420.
  • Lahiri J, Lin Y, Bozkurt P, et al. An extended defect in graphene as a metallic wire. Nat Nanotechnol. 2010;5:326–329.
  • Huang PY, Ruiz-Vargas CS, Van Der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469:389–392.
  • Kim K, Lee Z, Regan W, et al. Grain boundary mapping in polycrystalline graphene. ACS Nano. 2011;5:2142–2146.
  • Kim DW, Kim YH, Jeong HS, et al. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat Nanotechnol. 2012;7:29–34.
  • Duong DL, Han GH, Lee SM, et al. Probing graphene grain boundaries with optical microscopy. Nature. 2012;490:235–239.
  • Fei Z, Rodin AS, Gannett W, et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat Nanotechnol. 2013;8:821–825.
  • Meyer JC, Kisielowski C, Erni R, et al. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008;8:3582–3586.
  • Liang Z, Xu Z, Yan T, et al. Atomistic simulation and the mechanism of graphene amorphization under electron irradiation. Nanoscale. 2014;6:2082.
  • Krasheninnikov AV, Lehtinen PO, Foster AS, et al. Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys Rev Lett. 2009;102:126807.
  • Luo Z, Yu T, Kim KJ, et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano. 1781–1788;3(2009):1781-1788.
  • Robinson JT, Burgess JS, Junkermeier CE, et al. Properties of fluorinated graphene films. Nano Lett. 2010;10:3001–3005.
  • Liu HY, Hou ZF, Hu CH, et al. Electronic and magnetic properties of fluorinated graphene with different coverage of fluorine. J Phys Chem C. 2012;116:18193–18201.
  • Fan L, Zhang H, Zhang P, et al. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition. Appl Surf Sci. 2015;347:632–635.
  • Bousa D, Luxa J, Mazanek V, et al. Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892.
  • Gao W. The chemistry of graphene oxide.Graphene Oxide .Cham:Springer. 2015;61–95.
  • Li B, Zhou L, Wu D, et al. Photochemical chlorination of graphene. ACS Nano. 2011;5:5957–5961.
  • Boukhvalov DW, Katsnelson MI, Lichtenstein AI. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B Condens Matter Mater Phys. 2008;77:035427.
  • Sun X, Li B, Lu M. A covalent modification for graphene by adamantane groups through two-step chlorination-Grignard reactions. J Solid State Chem. 2017;251:194–197.
  • Coraux J, N’Diaye AT, Busse C, et al. Structural coherency of graphene on Ir(111). Nano Lett. 2008;8:565–570.
  • Liu Y, Yakobson BI. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 2010;10:2178–2183.
  • Cockayne E, Rutter GM, Guisinger NP, et al. Grain boundary loops in graphene. Phys Rev B Condens Matter Mater Phys. 2011;83:195425.
  • El-Barbary AA, Telling RH, Ewels CP, et al. Structure and energetics of the vacancy in graphite. Phys Rev B. 2003;68:144107.
  • Ma J, Alfè D, Michaelides A, et al. Stone-Wales defects in graphene and other planar sp2 -bonded materials. Phys Rev B Condens Matter Mater Phys. 2009;80:033407.
  • Lusk MT, Carr LD. Nanoengineering defect structures on graphene. Phys Rev Lett. 2008;100:175503.
  • Li L, Reich S, Robertson J. Defect energies of graphite: density-functional calculations. Phys Rev B Condens Matter Mater Phys. 2005;72:184109.
  • Krasheninnikov AV, Lehtinen PO, Foster AS, et al. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem Phys Lett. 2006;418:132–136.
  • Do Lee G, Wang CZ, Yoon E, et al. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys Rev Lett. 2005;95: 205501.
  • Lee Y, Kim S, Tománek D. Catalytic growth of single-wall carbon nanotubes: an Ab initio study. Phys Rev Lett. 1997;78:2393–2396.
  • Das Sarma S, Adam S, Hwang EH, et al. Electronic transport in two-dimensional graphene. Rev Mod Phys. 2011;83:407–470.
  • Cortijo A, Vozmediano MAH. Effects of topological defects and local curvature on the electronic properties of planar graphene. Nucl Phys B. 2007;763:293–308.
  • Rutter GM, Crain JN, Guisinger NP, et al. Scattering and interference in epitaxial graphene. Science. 2007;317:219–222.
  • Bai KK, Zhou Y, Zheng H, et al. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. Phys Rev Lett. 2014;113:086102.
  • Tapasztó L, Dumitrica T, Kim SJ, et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys. 2012;8:739–742.
  • Levy N, Burke SA, Meaker KL, et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science. 2010;329:544–547.
  • Partovi-Azar P, Nafari N, Tabar MRR. Interplay between geometrical structure and electronic properties in rippled free-standing graphene. Phys Rev B Condens Matter Mater Phys. 2011;83:165434.
  • Katsnelson MI, Geim AK. Electron scattering on microscopic corrugations in graphene. Philos Trans A Math Phys Eng Sci. 2008;366:195–204.
  • Pereira VM, Castro Neto AH, Liang HY, et al. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett. 2010;105:156603.
  • Jung S, Rutter GM, Klimov NN, et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat Phys. 2011;7:245–251.
  • Morozov SV, Novoselov KS, Katsnelson MI, et al. Strong suppression of weak localization in graphene. Phys Rev Lett. 2006;97:016801.
  • Li X, Magnuson CW, Venugopal A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010;10:4328–4334.
  • Song HS, Li SL, Miyazaki H, et al. Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep. 2012;2:337.
  • Tapasztó L, Nemes-Incze P, Dobrik G, et al. Mapping the electronic properties of individual graphene grain boundaries. Appl Phys Lett. 2012;100:053114.
  • Ahmad M, An H, Kim YS, et al. Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology. 2012;23:285705.
  • Jauregui LA, Cao H, Wu W, et al. Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Commun. 2011;151:1100–1104.
  • Tsen AW, Brown L, Levendorf MP, et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science. 2012;336:1143–1146.
  • Ryu J, Kim Y, Won D, et al. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano. 2014;8:950–956.
  • Ma T, Liu Z, Wen J, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat Commun. 2017;8:14486.
  • Gorjizadeh N, Farajian AA, Kawazoe Y. The effects of defects on the conductance of graphene nanoribbons. Nanotechnology. 2009;20:015201.
  • Deretzis I, Fiori G, Iannaccone G, et al. Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies. Phys Rev B Condens Matter Mater Phys. 2010;81:085427.
  • Wehling TO, Yuan S, Lichtenstein AI, et al. Resonant scattering by realistic impurities in graphene. Phys Rev Lett. 2010;105:056802.
  • Li TC, Lu SP. Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B Condens Matter Mater Phys. 2008;77:085408.
  • Ando T, Effect S, Ando T. Screening effect and impurity scattering in monolayer graphene. J Phys Soc Japan. 2006;75:1–7.
  • Martin J, Akerman N, Ulbricht G, et al. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys. 2008;4:144–148.
  • Zhang Y, Brar VW, Girit C, et al. Origin of spatial charge inhomogeneity in graphene. Nat Phys. 2009;5:722–726.
  • Peres NMR, Guinea F, Castro Neto AH. Electronic properties of disordered two-dimensional carbon. Phys Rev B Condens Matter Mater Phys. 2006;73:125411.
  • Giannazzo F, Sonde S, Lo Nigro R, et al. Mapping the density of scattering centers limiting the electron mean free path in graphene. Nano Lett. 2011;11:4612–4618.
  • Mousavi H, Moradian R. Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci. 2011;13:1459–1464.
  • Panchakarla LS, Subrahmanyam KS, Saha SK, et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater. 2009;21:4726–4730.
  • Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B Condens Matter Mater Phys. 2006;74: 155426.
  • Seol JH, Jo I, Moore AL, et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328:213–216.
  • Liao AD, Wu JZ, Wang X, et al. Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett. 2011;106:256801.
  • Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281.
  • Hao F, Fang D, Xu Z. Mechanical and thermal transport properties of graphene with defects. Appl Phys Lett. 2011;99:041901.
  • Haskins J, Kinaci A, Sevik C, et al. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano. 2011;5:3779–3787.
  • Evans WJ, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: effect of ribbon width, edge roughness, and hydrogen termination. Appl Phys Lett. 2010;96:203112.
  • Xu Y, Chen X, Gu BL, et al. Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl Phys Lett. 2009;95: 233116.
  • Guo Z, Zhang D, Gong X-G. Thermal conductivity of graphene nanoribbons. Appl Phys Lett. 2009;95:163103.
  • Cai W, Moore AL, Zhu Y, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010;10: 1645–1651;.
  • Bagri A, Kim SP, Ruoff RS, et al. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011;11:3917–3921.
  • Serov AY, Ong Z-Y, Pop E. Effect of grain boundaries on thermal transport in graphene. Appl Phys Lett. 2013;102:033104.
  • Liu Y, Dobrinsky A, Yakobson BI. Graphene edge from armchair to zigzag: the origins of nanotube chirality? Phys Rev Lett. 2010;105:235502.
  • Boukhvalov DW, Katsnelson MI. Enhancement of chemical activity in corrugated graphene. J Phys Chem C. 2009;113:14176–14178.
  • Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene with defects. Nano Lett. 2008;8:4374–4379.
  • Cantele G, Lee YS, Ninno D, et al. Spin channels in functionalized graphene nanoribbons. Nano Lett. 2009;9:3425–3429.
  • Duplock EJ, Scheffler M, Lindan PJD. Hallmark of perfect graphene. Phys Rev Lett. 2004;92:225502.
  • Peng X, Ahuja R. Symmetry breaking induced band gap in epitaxial graphene layers on SiC. Nano Lett. 2008;8:4464–4468.
  • Cretu O, Krasheninnikov AV, Rodríguez-Manzo JA, et al. Migration and localization of metal atoms on strained graphene. Phys Rev Lett. 2010;105:196102.
  • Maldonado S, Morin S, Stevenson KJ. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon N Y. 2006;44:1429–1437.
  • Wang Y, Shao Y, Matson DW, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano. 2010;4:1790–1798.
  • Qu L, Liu Y, Baek JB, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano. 2010;4:1321–1326.
  • Dikin DA, Stankovich S, Zimney EJ, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448:457–460.
  • Lee GH, Cooper RC, An SJ, et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science. 2013;340:1074–1076.
  • Koenig SP, Boddeti NG, Dunn ML, et al. Ultrastrong adhesion of graphene membranes. Nat Nanotechnol. 2011;6:543–546.
  • Tapia A, Peón-Escalante R, Villanueva C, et al. Influence of vacancies on the elastic properties of a graphene sheet. Comput Mater Sci. 2012;55:255–262.
  • Xiao JR, Staniszewski J, Gillespie JW. Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects. Mater Sci Eng A. 2010;527:715–723.
  • Xiao JR, Staniszewski J, Gillespie JW. Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos Struct. 2009;88:602–609.
  • Dettori R, Cadelano E, Colombo L. Elastic fields and moduli in defected graphene. J Phys Condens Matter. 2012;24: 104020.
  • Wang MC, Yan C, Ma L, et al. Effect of defects on fracture strength of graphene sheets. Comput Mater Sci. 2012;54:236–239.
  • Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices Microstruct. 2012;51:274–289.
  • Pei QX, Zhang YW, Shenoy VB. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon N Y. 2010;48:898–904.
  • Zandiatashbar A, Lee GH, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun. 2014;5:3186.
  • Chen MQ, Quek SS, Sha ZD, et al. Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study. Carbon N Y. 2015;85:135–146.
  • Yi L, Yin Z, Zhang Y, et al. A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene. Carbon N Y. 2013;51:373–380.
  • Zhang J, Zhao J, Lu J. Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano. 2012;6:2704–2711.
  • Rasool HI, Ophus C, Klug WS, et al. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun. 2013;4:2811.
  • Liu TH, Pao CW, Chang CC. Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon N Y. 2012;50:3465–3472.
  • Wei Y, Wu J, Yin H, et al. The nature of strength enhancement and weakening by pentagon – heptagon defects in graphene by pentagon-heptagon defects in graphene. Nat Mater. 2012;11:1–15.
  • Schniepp HC, Li JL, McAllister MJ, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110:8535–8539.
  • Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006;312:1191–1196.
  • Ohta T, Bostwick A, Seyller T, et al. Controlling the electronic structure of bilayer graphene. Science (80-.). 2006;313:951–954.
  • Yazdi G, Iakimov T, Yakimova R. Epitaxial graphene on SiC: a review of growth and characterization. Crystals. 2016;6:53.
  • Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater. 2008;7:406–411.
  • De Heer WA, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc Natl Acad Sci. 2011;108:16900–16905.
  • Yu Q, Lian J, Siriponglert S, et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett. 2008;93:113103.
  • Suk JW, Kitt A, Magnuson CW, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano. 2011;5:6916–6924.
  • Seung HS, Nelson DR. Defects in flexible membranes with crystalline order. Phys Rev A. 1988;38:1005–1018.
  • Obraztsov AN, Obraztsova EA, Tyurnina AV, et al. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon N Y. 2007;45:2017–2021.
  • Pirkle A, Chan J, Venugopal A, et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett. 2011;99:122108.
  • Ishigami M, Chen JH, Cullen WG, et al. Atomic structure of graphene on SiO2. Nano Lett. 2007;7:1643–1648.
  • Lee YG, Kang CG, Jung UJ, et al. Fast transient charging at the graphene/SiO2 interface causing hysteretic device characteristics. Appl Phys Lett. 2011;98:183508–183508–3.
  • Lafkioti M, Krauss B, Lohmann T, et al. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 2010;10:1149–1153.
  • Calado VE, Schneider GF, Theulings AMMG, et al. Formation and control of wrinkles in graphene by the wedging transfer method. Appl Phys Lett. 2012;101: 103116.
  • Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A. 2015;3:11700–11715.
  • Chen X, Zhang L, Chen S. Large area CVD growth of graphene. Synth. Met. 2015;210:95–108.
  • Kim HG, Kihm KD, Lee W, et al. Effect of graphene-substrate conformity on the in-plane thermal conductivity of supported graphene. Carbon N Y. 2017;125:39–48.
  • Lui CH, Liu L, Mak KF, et al. Ultraflat graphene. Nature. 2009;462:339–341.
  • Kedzierski J, Hsu PL, Reina A, et al. Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition. IEEE Electron Device Lett. 2009;30:745–747.
  • Cheng Z, Zhou Q, Wang C, et al. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011;11:767–771.
  • Kalbac M, Lehtinen O, Krasheninnikov AV, et al. Ion-irradiation-induced defects in isotopically-labeled two layered graphene: enhanced in-situ annealing of the damage. Adv Mater. 2013;25:1004–1009.
  • Kim JH, Hwang JH, Suh J, et al. Work function engineering of single layer graphene by irradiation-induced defects. Appl Phys Lett. 2013;103: 171604.
  • Robertson AW, Allen CS, Wu YA, et al. Spatial control of defect creation in graphene at the nanoscale. Nat Commun. 2012;3:1144.
  • Lin YC, Lu CC, Yeh CH, et al. Graphene annealing: how clean can it be? Nano Lett. 2012;12:414–419.
  • Marciano O, Gonen S, Levy N, et al. Modulation of oxygen content in graphene surfaces using temperature-programmed reductive annealing: electron paramagnetic resonance and electrochemical study. Langmuir. 32(2016):11672–11680.
  • Wang B, Pantelides ST. Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules. Phys Rev B Condens Matter Mater Phys. 2011;83:245403.
  • Daukiya L, Mattioli C, Aubel D, et al. Covalent functionalization by cycloaddition reactions of pristine defect-free graphene. ACS Nano. 2017;11:627–634.
  • Kumar SB, Guo J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 2012;12:1362–1366.
  • He X, Gao L, Tang N, et al. Shear strain induced modulation to the transport properties of graphene. Appl Phys Lett. 2014;105:083108.
  • Krasheninnikov AV, Banhart F. Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater. 2007;6:723–733.
  • Tapaszto L, Dobrik G, Nemes-Incze P, et al. Tuning the electronic structure of graphene by ion irradiation. Phys Rev B. 2008;78:233407.
  • Buchheim J, Wyss RM, Shorubalko I, et al. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation. Nanoscale. 2016;8:8345–8354.
  • Buchowicz G, Stone PR, Robinson JT, et al. Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils. Appl Phys Lett. 2011;98:032102.
  • Kotakoski J, Krasheninnikov AV, Kaiser U, et al. From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett. 2011;106:105505.
  • Lehtinen O, Kotakoski J, Krasheninnikov AV, et al. Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys Rev B Condens Matter Mater Phys. 2010;81: 153401.
  • Madras G, Smith JM, McCoy BJ. Degradation of poly(methyl methacrylate) in solution. Ind Eng Chem Res. 1996;35:1795–1800.
  • Kashiwagi T, Brown JE, Inaba A, et al. Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules. 1986;19:2160–2168.
  • Guo F, Xing W, Zhou J, et al. Studies in the capacitance properties of diaminoalkane-intercalated graphene. Electrochim Acta. 2014;148:220–227.
  • López V, Sundaram RS, Gómez-Navarro C, et al. Chemical vapor deposition repair of graphene oxide: a route to highly conductive graphene monolayers. Adv Mater. 2009;21:4683–4686.
  • Hossain MZ, Johns JE, Bevan KH, et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem. 2012;4:305–309.
  • Lin YC, Lin CY, Chiu PW. Controllable graphene N-doping with ammonia plasma. Appl Phys Lett. 2010;96:133110.
  • Wang CD, Yuen MF, Ng TW, et al. Plasma-assisted growth and nitrogen doping of graphene films. Appl Phys Lett. 2012;100:253107.
  • Felten A, Bittencourt C, Pireaux JJ, et al. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4treatments. J Appl Phys. 2005;98:074308.
  • Akada K, Terasawa T, Imamura G, et al. Control of work function of graphene by plasma assisted nitrogen doping. Appl Phys Lett. 2014;104:131602.
  • Li X, Wang H, Robinson JT, et al. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc. 2009;131:15939–15944.
  • Pereira VM, Castro Neto AH. Strain engineering of graphene’s electronic structure. Phys Rev Lett. 2009;103:046801.
  • Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat Phys. 2010;6:30–33.
  • H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Seville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B. 2016;110: 8535–8539.
  • Z. jun Wang, M. Wei, L. Jin, Y. Ning, L. Yu, Q. Fu, X. Bao, Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia, Nano Res. 2013;6: 399–408.