1,588
Views
14
CrossRef citations to date
0
Altmetric
Engineering and Structural Materials

Mechanochemically assisted hydrothermal synthesis of Sn-substituted MFI-type silicates

, , , , , & show all
Pages 545-553 | Received 17 May 2018, Accepted 03 Jul 2018, Published online: 06 Aug 2018

References

  • Kataoka H , Nakanishi T , Omagari S , et al. Drastically improved durability and efficiency of silicon solar cells using hyper-stable lanthanide coordination polymer beads. Bull Chem Soc Jpn. 2016;89:103–109.
  • Wu KCW , Yamauchi Y. Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. J Mater Chem. 2012;22:1251–1256.
  • Tobe Y , Tahara K , Feyter SD . Adaptive building blocks consisting of rigid triangular core and flexible alkoxychains for self-assembly at liquid/solid interfaces. Bull Chem Soc Jpn. 2016;89:1277–1306.
  • Wang Y , Aurelio D , Li W , et al. Modulation of multiscale 3D lattices through conformational control: painting silk inverse opals with water and light. Adv Mater. 2017;29:1702769.
  • Inoue K . The study and application of photoreceptive membrane protein rhodopsin. Bull Chem Soc Jpn. 2016;89:1416–1424.
  • Ennaert T , Aelst JV , Dijkmans J , et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev. 2016;45:584–611.
  • Schaack BB , Schrader W , Schüth F . How are heteroelements (Ga and Ge) incorporated in silicate oligomers? Chem Eur J. 2009;15:5920–5925.
  • Gabelica Z , Valange S . Synthesis of MFI metallosilicate zeolites using metallic amino complexes as mineralizing agents: an overview. Micropor Mesopor Mater. 1999;30:57–66.
  • Van Bokhoven JA , Lamberti C . Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy. Coord Chem Rev. 2014;277:275–290.
  • Wang X , Deng X , Bai Z , et al. The synthesis of super-hydrophilic and acid-proof Ge–ZSM-5 membranes by simultaneous incorporation of Ge and Al into a Silicalite-1 framework. J Membr Sci. 2014;468:202–208.
  • Blasco T , Camblor MA , Corma A , et al. Direct synthesis and characterization of hydrophobic aluminum-free Ti-Beta zeolite. J Phys Chem B. 1998;102:75–88.
  • Hari Prasad Rao PR , Ramaswamy AV . Catalytic hydroxylation of phenol over a vanadium silicate molecular sieve with MEL structure. Appl Catal A: General. 1993;93:123–130.
  • Dapsens PY , Mondelli C , Pérez-Ramirez J . Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables. Chem Soc Rev. 2015;44:7025–7043.
  • Guo Q , Fan F , Pidko EA , et al. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. Chem Sus Chem. 2013;6:1352–1356.
  • Dapsens PY , Mondelli C , Pérez-Ramírez J . Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. Chem Sus Chem. 2013;6:831–839.
  • Mal NK , Ramaswamy AV . Hydroxylation of phenol over Sn-silicate-1 molecular siece: solvent effects. J Mol Catal. 1996;105:149–158.
  • Mal NK , Rajamohanon PR , Ramaswamy AV . Sn-MFI molecular sieves: synthesis methods, 29Si liquid and solid MAS-NMR, 119Sn static and MAS NMR studies. Micropor Mater. 1997;12:331–340.
  • Vargas NG , Stevenson S , Shantz D . Synthesis and characterization of tin(IV) MFI: sodium inhibits the synthesis of phase pure materials. Micropor Mesopor Mater. 2012;152:37–49.
  • Van Grieken R , Martos C , Sánchez- Sánchez M , et al. Synthesis of Sn–silicalite from hydrothermal conversion of SiO2–SnO2 xerogels. Micropor Mesopor Mater. 2009;119:176–185.
  • Kang Z , Zhang X , Liu H , et al. A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer–Villiger oxidation. Chem Eng J. 2013;218:425–432.
  • Niphadkar PS , Kotwal MS , Deshpande SS , et al. Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction. Mater Chem Phys. 2009;114:344–349.
  • Dijikmans J , Gabriëls D , Dusselier M , et al. Productive sugar isomerization with highly active Sn in dealuminated β zeolites. Green Chem. 2013;15:2777–2785.
  • Yamamoto K , García SEB , Muramatsu A . Zeolite synthesis using mechanochemical reaction. Micropor Mesopor Mater. 2007;101:90–96.
  • Garcia SEB , Yamamoto K , Saito F , et al. Titanosilicate zeolite synthesized via mechanochemical route. J Jpn Petrol Inst. 2007;50:53–60.
  • Kobayashi H , Nakaya M , Kanie K , et al. Precise control in characteristics of nano-particulate MFI-type ferrisilicate and their catalysis in the conversion of dimethyl ether into light olefins. J Environ Sci Eng B. 2015;4:1–8.
  • Ulery AL , Drees LR , eds. Methods of Soil Analysis Part 5-Mineralogical Methods. Madison, Wisconsin, USA: Soil Science Society of America, Inc; 2008.
  • Kang Z , Zhang X , Liu H , et al. Factors affecting the formation of Sn-beta zeolites by steam-assisted conversion method. Mater Chem Phys. 2013;141:519–529.
  • Tang B , Dai W , Wu G , et al. Improved postsynthesis strategy to Sn-beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal. 2014;4:2801–2810.
  • Luo HY , Bui L , Gunther WR , et al. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer−Villiger oxidation of cyclic ketones. ACS Catal. 2012;2:2695−2699.
  • Boronat M , Concepción P , Corma A , et al. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies J. Catal. 2005;234:111–118.
  • Chang CC , Cho HJ , Wang Z , et al. Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion. Green Chem. 2015;17:2943–2951.
  • Osmundsen CM , Holm MS , Dahl S , et al. Tin-containing silicates: structure–activity relations. Proc R Soc. 2012;468:2000–2016.
  • Fejes P , Nagy JB , Kovfács K , et al. Synthesis of tin(IV) silicalites (MFI) and their characterization A Mossbauer and MAS NMR spectroscopy study Appl. Catal A: General. 1996;145:155–184.
  • Kanie K , Mizutani H , Terabe A , et al. Precursor effect on hydrothermal synthesis of sodium potassium niobate fine particles and their piezoelectric properties. Jpn J Appl Phys. 2011;50:09ND09-1-09ND09-6.
  • Montejo-Valencia BD , Salcedo-Pérez JL , Curet-Arana MC . DFT study of closed and open sites of BEA, FAU, MFI, and BEC zeolites substituted with tin and titanium. J Phys Chem C. 2016;120:2176–2186.
  • Kotrla J , Kubelkova L , Lee CC , et al. Calorimetric and FTIR studies of acetonitrile on H-[Fe]ZSM-5 and H-[Al]ZSM-5. J Phys Chem B. 1998;102:1437–1443.
  • Roy S , Bakhmutsky K , Mahmoud E , et al. Probing Lewis acid sites in Sn-beta zeolite. ACS Catal. 2013;3:573–583.
  • Bermejo-Deval R , Orazov M , Gounder R , et al. Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catal. 2014;4:2288–2297.
  • Otomo R , Kosugi R , Tastumi T , et al. Modification of Sn-Beta zeolite: characterization of acidic/basic properties and catalytic performance in Baeyer–Villiger oxidation. Cat Sci Tech. 2016;6:2787–2795.
  • Yang G , Zhou L , Han X . Lewis and Brönsted acidic sites in M4+-doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study. J Mol Catal Chem. 2012;363-364:371–379.
  • Sushkevich VL , Vimont A , Travert A , et al. Spectroscopic evidence for open and closed Lewis acid sites in ZrBEA zeolites. J Phys Chem C. 2015;119:17633–17639.