3,350
Views
31
CrossRef citations to date
0
Altmetric
Focus on Energy Harvesting - Science, Technology, Application and Metrology

Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration

, , , &
Pages 660-668 | Received 31 Mar 2018, Accepted 03 Aug 2018, Published online: 25 Sep 2018

References

  • Karim F, Zeadally S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sustain Energy Rev. 2016;55:1041–1054.
  • Asm ZK, Reza AW, Saleh MU, et al. Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew Sustain Energy Rev. 2014;38:973–989.
  • Ulukus S, Yener A, Erkip E, et al. Energy harvesting wireless communications: a review of recent advances. IEEE J Sel AREAS Commun. 2015;33:360–381.
  • Wei C, Jing X. A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev. 2017;74:1–18.
  • Siddique ARM, Mahmud S, Heyst BV. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers Manag. 2015;106:728–747.
  • Beeby SP, Tudor MJ, White NM. Energy harvesting vibration sources for microsystems applications. Meas Sci Technol. 2006;17:R175–R195.
  • Jiang Y, Shiono S, Hamada H. Low-frequency energy harvesting using a laminated PVDF cantilever with a magnetic mass. Proceedings of the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications; 2010 Nov 30 – Dec 30; Leuven, Belgium; 2010. 375–378.
  • Kim IH, Jin S, Jang SJ, et al. A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam. Smart Mater Struct. 2014;23:37002.
  • Karami MA, Inman DJ. Electromechanical modeling of the low-frequency zigzag micro-energy harvester. J Intell Mater Syst Struct. 2011;22:271–282.
  • Liu H, Tay CJ, Quan C, et al. Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromechanical Syst. 2011;20:1131–1142.
  • Janphuang P, Mishra B, Briand D, et al. Realization of an autonomous UWB sensor node powered by a piezoelectric energy harvester. Proceedings of The 12th international workshop on micro and nanotechnology for power generation and energy conversion applications; 2012 Dec 2–5; Atlanta, GA; 2012.
  • Jeon YB, Sood R, Jeong J-H, et al. MEMS power generator with transverse mode thin film PZT. Sens Actuators A Phys. 2005;122:16–22.
  • Yu H, Zhou J, Deng L, et al. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit. Sensors. 2014;14:3323–3341.
  • Song HC, Kumar P, Maurya D, et al. Ultra-low resonant piezoelectric MEMS energy harvester with high power density. J Microelectromechanical Syst. 2017;26:1226–1234.
  • Ishida K, Huang TC, Honda K, et al. Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J Solid-State Circuits. 2013;48:255–264.
  • Liu W, Han M, Meng B, et al. Low frequency wide bandwidth MEMS energy harvester based on spiral-shaped PVDF cantilever. Sci China Technol Sci. 2014;57:1068–1072.
  • Xu R, Lei A, Dahl-Petersen C, et al. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sens Actuators, Phys. 2012;188:383–388.
  • Roundy S, Leland ES, Baker J, et al. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005;4:28–36.
  • Aboulfotoh N, Twiefel J. On developing an optimal design procedure for a bimorph piezoelectric cantilever energy harvester under a predefined volume. Mech. Syst. Signal Process. 2018;106:1–12.
  • Muthalif AGA, Nordin NHD. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process. 2015;54:417–426.
  • Benasciutti D, Moro L, Zelenika S, et al. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol. 2010;16:657–668.
  • Suzuki T, Kotera H, Kanno I, et al. United States patent US 8871433. 2014.
  • Bowen CR, Kim HA, Weaver PM, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci. 2014;7:25–744.
  • Sengupta R, Chakraborty S, Bandyopadhyay S, et al. Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polym Eng Sci. 2015;55:1589–1616.
  • Akamatsu M, Terao K, Takao H, et al. Development of high accuracy spray coating method using multi-layer coat. IEEJ Trans Sens Micromach. 2013. Japanese.
  • Silva MP, Costa CM, Sencadas V, et al. Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing. J Polym Res. 2011;18:1451–1457.
  • Todaro MT, Guido F, Mastronardi V, et al. Piezoelectric MEMS vibrational energy harvesters: advances and outlook. Microelectron Eng. 2017;183–184:23–36.
  • Yang Z, Zhou S, Zu J, et al. High-performance piezoelectric energy harvesters and their applications. Cell Press. 2018;2:642–697.
  • Priya S, Song HC, Zhou Y, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst. 2017;4:3–39.