2,570
Views
12
CrossRef citations to date
0
Altmetric
Focus on Organic and Hybrid Photovoltaics

Insights into photovoltaic properties of ternary organic solar cells from phase diagrams

, , , , , & show all
Pages 669-682 | Received 08 Jun 2018, Accepted 05 Aug 2018, Published online: 25 Sep 2018

References

  • Ameri T , Khoram P , Min J , et al. Organic ternary solar cells: a review. Advanced Mater. 2013;25(31):4245–4266.
  • An QS , Zhang FJ , Zhang J , et al. Versatile ternary organic solar cells: a critical review. Energy Environ Sci. 2016;9(2):281–322.
  • Zhao JB , Li YK , Yang GF , et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy. 2016;1:15027.
  • Liu YH , Zhao JB , Li ZK , et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun. 2014;5:5293.
  • Green MA , Hishikawa Y , Dunlop ED , et al. Solar cell efficiency tables (version 52). Prog Photovoltaics. 2018;26(7):427–436.
  • Chen CC , Chang WH , Yoshimura K , et al. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Advanced Mater. 2014;26(32):8.
  • Li N , Brabec CJ. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ Sci. 2015;8(10):2902–2909.
  • Gao BW , Meng J. Ternary blend bulk heterojunction polymer solar cells based on double donors and single acceptor with ultra wideband absorption. Mater Express. 2015;5(6):489–496.
  • Yang Y , Chen W , Dou LT , et al. High-performance multiple-donor bulk heterojunction solar cells. Nat Photonics. 2015;9(3):190–198.
  • Lee JW , Choi YS , Ahn H , et al. Ternary blend composed of two organic donors and one acceptor for active layer of high-performance organic solar cells. ACS Appl Mater Interfaces. 2016;8(17):10961–10967.
  • Baran D , Ashraf RS , Hanifi DA , et al. Reducing the effciency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater. 2017;16(3):363.
  • Lu H , Zhang JC , Chen JY , et al. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Advanced Mater. 2016;28(43):8.
  • Zhang JQ , Zhang YJ , Fang J , et al. Conjugated polymer-small molecule alloy leads to high efficient ternary organic solar cells. J Am Chem Soc. 2015;137(25):8176–8183.
  • Huang TY , Patra D , Hsiao YS , et al. Efficient ternary bulk heterojunction solar cells based on small molecules only. J Mater Chem A. 2015;3(19):10512–10518.
  • Makha M , Testa P , Anantharaman SB , et al. Ternary semitransparent organic solar cells with a laminated top electrode. Sci Technol Advanced Mater. 2017;18(1):8.
  • An QS , Zhang FJ , Li LL , et al. Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy. ACS Appl Mater Interfaces. 2015;7(6):3691–3698.
  • Honda S , Ohkita H , Benten H , et al. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv Energy Mater. 2011;1(4):588–598.
  • Lim B , Bloking JT , Ponec A , et al. Ternary bulk heterojunction solar cells: addition of soluble NIR dyes for photocurrent generation beyond 800 nm. ACS Appl Mater Interfaces. 2014;6(9):6905–6913.
  • Zhang M , Zhang FJ , An QS , et al. High efficient ternary polymer solar cells based on absorption complementary materials as electron donor. Solar Energy Materials Solar Cells. 2015;141:154–161.
  • Khlyabich PP , Rudenko AE , Thompson BC , et al. Structural origins for tunable open-circuit voltage in ternary-blend organic solar cells. Adv Funct Mater. 2015;25(34):5557–5563.
  • Xu H , Ohkita H , Benten H , et al. Open-circuit voltage of ternary blend polymer solar cells. Jpn J Appl Phys. 2014;53(1). DOI:10.7567/jjap.53.01ab10
  • Mollinger SA , Vandewal K , Salleo A . Microstructural and electronic origins of open-circuit voltage tuning in organic solar cells based on ternary blends. Adv Energy Mater. 2015;5(23):12.
  • Su W , Fan Q , Guo X , et al. Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy. 2017;38:510–517.
  • Ma X , Mi Y , Zhang F , et al. Efficient ternary polymer solar cells with two well-compatible donors and one ultranarrow bandgap nonfullerene acceptor. Adv Energy Mater. 2018;8(11). DOI:10.1002/aenm.201702854
  • Jiang W , Yu R , Liu Z , et al. Ternary nonfullerene polymer solar cells with 12.16% efficiency by introducing one acceptor with cascading energy level and complementary absorption. Advanced Mater. 2018;30(1). DOI:10.1002/adma.201703005
  • Zhang M , Zhang F , An Q , et al. Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. J Mater Chem A. 2017;5(7):3589–3598.
  • Koppe M , Egelhaaf H-J , Dennler G , et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv Funct Mater. 2010;20(2):338–346.
  • Khlyabich PP , Burkhart B , Thompson BC . Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J Am Chem Soc. 2012;134(22):9074–9077.
  • Street RA , Davies D , Khlyabich PP , et al. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J Am Chem Soc. 2013;135(3):986–989.
  • Machui F , Rathgeber S , Li N , et al. Influence of a ternary donor material on the morphology of a P3HT:PCBM blend for organic photovoltaic devices. J Mater Chem. 2012;22(31):15570–15577.
  • Campoy-Quiles M , Kanai Y , El-Basaty A , et al. Ternary mixing: a simple method to tailor the morphology of organic solar cells. Org Electron. 2009;10(6):1120–1132.
  • Kipp D , Ganesan V . Exploiting the combined influence of morphology and energy cascades in ternary blend organic solar cells based on block copolymer additives. Macromolecules. 2016;49(14):5137–5144.
  • Mulherin RC , Jung S , Huettner S , et al. Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer. Nano Lett. 2011;11(11):4846–4851.
  • Ameri T , Khoram P , Heumueller T , et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J Mater Chem A. 2014;2(45):19461–19472.
  • Gu Y , Wang C , Liu F , et al. Morphology study on ternary blend polymer solar cell to achieve improved device performance. In: Kafafi ZH , Lane PA , editors. Organic photovoltaics Xiv. Proceedings of SPIE. 2013; Vol. 88302013
  • Hu W . Polymer physics: a molecular approach. Wien: Springer-Verlag; 2013.
  • Perea JD , Langner S , Salvador M , et al. Introducing a new potential figure of merit for evaluating microstructure stability in photovoltaic polymer-fullerene blends. J Phys Chem C. 2017;121(33):18153–18161.
  • Kurz W , Fisher DJ . Fundamentals of Solidification. Switzerland-Germany-UK-USA: Trans Tech Publications; 1986.
  • Kohler A , Bassler H . Electronic processes in organic semiconductors: an introduction. Weinheim, Germany: Wiley-VCH; 2015.
  • Papon P , Leblond J , Meijer PHE . The physics of phase transitions: concepts and applications. Berlin: Springer; 2002 01 01.
  • Müller C , Ferenczi TAM , Campoy-Quiles M , et al. Binary organic photovoltaic blends: a simple rationale for optimum compositions. Advanced Mater. 2008;20(18):3510–3515.
  • Li N , Machui F , Waller D , et al. Determination of phase diagrams of binary and ternary organic semiconductor blends for organic photovoltaic devices. Solar Energy Materials Solar Cells. 2011;95(12):3465–3471.
  • Foley G , Cohen C . Concentration fluctuations in polymer solvent systems. Macromolecules. 1987;20(8):1891–1896.
  • Albertsson PA . Partition of cell particles and macromolecules in polymer two-phase systems. Adv Protein Chem. 1970;24:309–341.
  • Bergfeldt K , Piculell L , Linse P . Segregation and association in mixed polymer solutions from Flory-Huggins model calculations. J Phys Chem. 1996;100(9):3680–3687.
  • Perrau MB , Iliopoulos I , Audebert R . Phase- separation of poly-electrolyte nonionic polymer systems in aqueous-solution - effects of salt and charge-density. Polymer. 1989;30(11):2112–2117.
  • Piculell L , Lindman B . Association and Segregation in aqueous polymer/polymer, polymer surfactant, and surfactant surfactant mixtures—similarities and differences. Adv Colloid Interface Sci. 1992;41:149–178.
  • Bates M , Lunt RR . Organic salt photovoltaics. Sustainable Energy & Fuels. 2017;1(5):955–968.
  • Traverse CJ , Young M , Suddard-Bangsund J , et al. Anions for near-infrared selective organic salt photovoltaics. Sci Rep. 2017;7. DOI:10.1038/s41598-017-16539-3.
  • Gesevičius D , Neels A , Jenatsch S , et al. Increasing photovoltaic performance of an organic cationic chromophore by anion exchange. Advanced Sci. 2018;5. DOI:10.1001/advs.201700496
  • Huo LJ , Zhang SQ , Guo X , et al. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie-International Edition. 2011;50(41):9697–9702.
  • Heier J , Peng C , Veron AC , et al. Cyanine dyes in solid state organic heterojunction solar cells. Proc SPIE. 2014;9184:918408 (10).
  • Veron AC , Zhang H , Linden A , et al. NIR-absorbing heptamethine dyes with tailor-made counterions for application in light to energy conversion. Org Lett. 2014;16(4):1044–1047.
  • Berner E , Jager T , Lanz T , et al. Influence of crystalline titanium oxide layer smoothness on the performance of inverted organic bilayer solar cells. Appl Phys Lett. 2013;102(18). DOI:10.1063/1.4804599
  • Ning Y , Lv L , Lu Y , et al. Investigation on thermal degradation process of polymer solar cells based on blend of PBDTTT-C and PC70BM. Int J Photoenergy. 2014;2014:1–9. DOI:10.1155/2014/354837
  • De Castro FA , Heier J , Nuesch F , et al. Origin of the kink in current-density versus voltage curves and efficiency enhancement of polymer-C-60 heterojunction solar cells. IEEE J Sel Top Quantum Electron. 2010;16(6):1690–1699.
  • Harper M , Weinstein B , Simon C , et al. Python-ternary: ternary Plots in Python. Zenodo. 2015 12 17. DOI:10.5281/zenodo.34938.
  • Flory PJ . Statistical thermodynamics of liquid mixtures. J Am Chem Soc. 1965;87(9):1833.
  • Horst R . Calculation of phase-diagrams not requiring the derivates of the gibbs energy demonstrated for a mixture of 2 homopolymers with the corresponding copolymer. Macromol Theory Simul. 1995;4(3):449–458.
  • Hellebust S , Nilsson S , Blokhus AM . Phase behavior of anionic polyelectrolyte mixtures in aqueous solution. Effects of molecular weights, polymer charge density, and ionic strength of solution. Macromolecules. 2003;36(14):5372–5382.
  • Zheng C , Penmetcha AR , Cona B , et al. Contribution of aggregate states and energetic disorder to a squaraine system targeted for organic photovoltaic devices. Langmuir. 2015;31(28):7717–7726.
  • Law KY . Organic photoconductive materials - recent trends and developments. Chem Rev. 1993;93(1):449–486.
  • Ning Y , Lv L , Lu Y , et al. Effects of photo-induced defects on the performance of PBDTTT-C/PC70 BM solar cells. Physica Status Solidi-Rapid Res Let. 2015;9(2):120–124.
  • Chen H-Y , Hou J , Zhang S , et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics. 2009;3(11):649–653.
  • Yoo S , Domercq B , Kippelen B . Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C-60. J Appl Phys. 2005;97(10). DOI:10.1063/1.1895473
  • Maibach J , Adermann T , Glaser T , et al. Impact of processing on the chemical and electronic properties of phenyl-C-61-butyric acid methyl ester. J Mater Chem C. 2014;2(37):7934–7942.
  • Heier J , Groenewold J , Huber S , et al. Nanoscale structuring of semiconducting molecular blend films in the presence of mobile counterions. Langmuir. 2008;24(14):7316–7322.
  • Kagawa I , Gregor HP . Theory of the effect of counterion size upon titration behavior of polycarboxylic acids. J Polymer Sci. 1957;23(103):477–484.
  • Khokhlov AR , Nyrkova IA . Compatibility enhancement and microdomain structuring in weakly charged polyelectrolyte mixtures. Macromolecules. 1992;25(5):1493–1502.
  • Collins BA , Li Z , Tumbleston JR , et al. Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BMSolar cells. Adv Energy Mater. 2013;3(1):65–74.
  • Vandewal K , Himmelberger S , Salleo A . Structural factors that affect the performance of organic bulk heterojunction solar cells. Macromolecules. 2013;46(16):6379–6387.
  • Buchaca-Domingo E , Vandewal K , Fei Z , et al. Direct correlation of charge transfer absorption with molecular donor: acceptor interfacial area via photothermal deflection spectroscopy. J Am Chem Soc. 2015;137(16):5256–5259.
  • Goh C , Kline RJ , McGehee MD , et al. Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl Phys Lett. 2005;86(12). DOI:10.1063/1.1891301
  • Foster S , Deledalle F , Mitani A , et al. Electron collection as a limit to polymer: PCBM Solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM. Adv Energy Mater. 2014;4(14). DOI:10.1002/aenm.201400311
  • Wuerfel U , Neher D , Spies A , et al. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat Commun. 2015;6. DOI:10.1038/ncomms7951.